Some remarks for one-dimensional mean curvature problems through a local minimization principle

被引:28
作者
Afrouzi, Ghasem A. [1 ]
Hadjian, Armin [1 ]
Bisci, Giovanni Molica [2 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[2] Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
关键词
One-dimensional prescribed curvature problem; variational methods; existence results; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE; EQUATIONS;
D O I
10.1515/anona-2013-0021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we deal with a bifurcation result for the following parametric one-dimensional mean curvature problem: -(u'/root 1+u'(2))' = lambda f(t, u) in (0,1), u(0) = u(1) = 0, where lambda is an element of R and f : [0,1] x R -> R is a Caratheodory function vanishing at zero. More precisely, a critical point theorem ( local minimum result) for differentiable functionals is exploited in order to prove that the above problem admits at least one nontrivial and nonnegative weak solution under an asymptotical behaviour of the nonlinear datum at zero. A concrete example of an application is then presented.
引用
收藏
页码:427 / 441
页数:15
相关论文
共 31 条
[1]  
Afrouzi G. A., PREPRINT
[2]  
[Anonymous], 2010, ENCY MATH APPL
[3]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[4]  
Bereanu C, 2006, ADV DIFFERENTIAL EQU, V11, P35
[5]  
Bonheure D., 2007, Rend. Ist. Mat. Univ. Trieste, V39, P63
[6]   Classical and non-classical solutions of a prescribed curvature equation [J].
Bonheure, Denis ;
Habets, Patrick ;
Obersnel, Franco ;
Omari, Pierpaolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :208-237
[7]  
CAPIETTO A, 2001, ANN MAT PUR APPL, V179, P159
[8]  
Chang K.-C., 2006, Inspired by S. S. Chern: A Memorial Volume in Honor of A Great Mathematician, P113
[9]   Multiple solutions of hemivariational inequalities with area-type term [J].
Degiovanni, M ;
Marzocchi, M ;
Radulescu, VD .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (04) :355-387
[10]  
Faraci F, 2010, STUD U BABES-BOL MAT, V55, P83