Off-diagonal geometric phases

被引:87
作者
Manini, N
Pistolesi, F
机构
[1] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[2] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France
关键词
D O I
10.1103/PhysRevLett.85.3067
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the adiabatic evolution of a set of nondegenerate eigenstates of a parametrized Hamiltonian. Their relative phase change can be related to geometric measurable quantities that extend the familiar concept of Berry phase to the evolution of more than one state. We present several physical systems where these concepts can be applied, including an experiment on microwave cavities for which off-diagonal phases can be determined from published data.
引用
收藏
页码:3067 / 3071
页数:5
相关论文
共 21 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   SOME GEOMETRICAL CONSIDERATIONS OF BERRY PHASE [J].
ANANDAN, J ;
STODOLSKY, L .
PHYSICAL REVIEW D, 1987, 35 (08) :2597-2600
[4]   Neutron interferometric observation of noncyclic phase - Comment [J].
Bhandari, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (10) :2089-2089
[5]   NONCYCLIC GEOMETRIC PHASES IN A PROPOSED 2-PHOTON INTERFEROMETRIC EXPERIMENT [J].
CHRISTIAN, J ;
SHIMONY, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5551-5567
[6]   FRACTIONAL QUANTIZATION OF MOLECULAR PSEUDOROTATION IN NA-3 [J].
DELACRETAZ, G ;
GRANT, ER ;
WHETTEN, RL ;
WOSTE, L ;
ZWANZIGER, JW .
PHYSICAL REVIEW LETTERS, 1986, 56 (24) :2598-2601
[7]  
Hamermesh M., 1964, Group theory and its applications to physical problems, Vsecond
[8]   GEOMETRIC PHASES AND HIDDEN SYMMETRIES IN SIMPLE RESONATORS [J].
LAUBER, HM ;
WEIDENHAMMER, P ;
DUBBERS, D .
PHYSICAL REVIEW LETTERS, 1994, 72 (07) :1004-1007
[9]   Cyclic phases at an n-fold degeneracy [J].
Manolopoulos, DE ;
Child, MS .
PHYSICAL REVIEW LETTERS, 1999, 82 (11) :2223-2227
[10]   QUANTUM KINEMATIC APPROACH TO THE GEOMETRIC PHASE .1. GENERAL FORMALISM [J].
MUKUNDA, N ;
SIMON, R .
ANNALS OF PHYSICS, 1993, 228 (02) :205-268