Pimsner algebras and Gysin sequences from principal circle actions

被引:12
|
作者
Arici, Francesca [1 ]
Kaad, Jens [1 ]
Landi, Giovanni [2 ,3 ]
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Trieste, Dipartimento Matemat & Informat, Via A Valerio 12-1, I-34127 Trieste, Italy
[3] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
关键词
KK-theory; Pimsner algebras; Gysin sequences; circle actions; quantum principal bundles; quantum lens spaces; quantum weighted projective spaces; C-ASTERISK-ALGEBRAS; CSTAR-ALGEBRAS; QUANTUM;
D O I
10.4171/JNCG/228
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A self Morita equivalence over an algebra B, given by a B-bimodule E, is thought of as a line bundle over B. The corresponding Pimsner algebra O-E is then the total space algebra of a noncommutative principal circle bundle over B. A natural Gysin-like sequence relates the KK-theories of O-E and of B. Interesting examples come from O-E a quantum lens space over B a quantum weighted projective line (with arbitrary weights). The KK-theory of these spaces is explicitly computed and natural generators are exhibited.
引用
收藏
页码:29 / 64
页数:36
相关论文
共 4 条
  • [1] Equivariant C∗-correspondences and compact quantum group actions on Pimsner algebras
    Bhattacharjee, Suvrajit
    Joardar, Soumalya
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025, 77 (01): : 57 - 96
  • [2] Equilibrium states on the Cuntz Pimsner algebras of self-similar actions
    Laca, Marcelo
    Raeburn, Iain
    Ramagge, Jacqui
    Whittaker, Michael F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (11) : 6619 - 6661
  • [3] Classification of Inductive Limits of Outer Actions of R on Approximate Circle Algebras
    Dean, Andrew J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (01): : 73 - 80
  • [4] Reconstructing directed graphs from generalized gauge actions on their Toeplitz algebras
    Brownlowe, Nathan
    Laca, Marcelo
    Robertson, Dave
    Sims, Aidan
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (05) : 2632 - 2641