An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit

被引:16
作者
Brandolini, Barbara [1 ]
Nitsch, Carlo [1 ]
Trombetti, Cristina [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
1ST DIRICHLET EIGENVALUE; STABILITY; EQUATION;
D O I
10.1007/s00013-010-0102-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an upper bound for the first Dirichlet eigenvalue of the p-Laplacian operator on convex domains. The result implies a sharp inequality where, for any convex set, the Faber-Krahn deficit is dominated by the isoperimetric deficit.
引用
收藏
页码:391 / 400
页数:10
相关论文
共 23 条
[1]  
Abramowitz M., 2013, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, V(eds)
[2]   On the properties of some nonlinear eigenvalues [J].
Alvino, A ;
Ferone, V ;
Trombetti, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (02) :437-451
[3]  
[Anonymous], 2001, Electronic Journal of Differential Equations (EJDE)electronic only
[4]   New isoperimetric estimates for solutions to Monge-Ampere equations [J].
Brandolini, B. ;
Nitsch, C. ;
Trombetti, C. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04) :1265-1275
[5]  
Burago Y. D., 1988, Springer Series in Soviet Mathematics, V285
[6]  
Cioranescu D., 1982, NONLINEAR PARTIAL DI, V60, P98
[7]   Estimates for the energy of the solutions to elliptic Dirichlet problems on convex domains [J].
Crasta, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :89-107
[8]   A sharp upper bound for the torsional rigidity of rods by means of web functions [J].
Crasta, G ;
Fragalà, I ;
Gazzola, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :189-211
[9]  
Crasta G., 2001, REND I MAT U TRIESTE, V33, P313
[10]  
DETHELIN F, 1986, CR ACAD SCI I-MATH, V303, P355