Improving the stability and performance of perovskite solar cells via off-the-shelf post-device ligand treatment

被引:197
作者
Zhang, Hong [1 ]
Ren, Xingang [1 ]
Chen, Xiwen [2 ,3 ]
Mao, Jian [1 ]
Cheng, Jiaqi [1 ]
Zhao, Yong [1 ]
Liu, Yuhang [4 ]
Milic, Jovana [4 ]
Yin, Wan-Jian [2 ,3 ]
Gratzel, Michael [4 ]
Choy, Wallace C. H. [1 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Pok Fu Lam Rd, Hong Kong, Hong Kong, Peoples R China
[2] Soochow Univ, Coll Phys Optoelect & Energy, Soochow Inst Energy & Mat Innovat SIEMIS, Suzhou 215006, Peoples R China
[3] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[4] Ecole Polytech Fed Lausanne, Sch Basic Sci, Inst Chem Sci & Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland
基金
中国国家自然科学基金;
关键词
HALIDE PEROVSKITES; PHOTOVOLTAIC EFFICIENCY; CH3NH3PBI3; PEROVSKITE; INDUCED DEGRADATION; HIGHLY EFFICIENT; ION MIGRATION; DESIGN; IODIDE; PASSIVATION; DEPOSITION;
D O I
10.1039/c8ee00580j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While metal halide perovskite solar cells (PVSCs) have drawn intense attention due to their high solar-to-power conversion efficiency (PCE), their practical application is hampered by their poor long-term stability against moisture. Although strategies have been reported to solve this issue, these methods are introduced during core-device fabrication processes which will increase the risk of introducing unexpected impurities during the fabrication. Herein, we introduce the first kind of simple post-device ligand (PDL) treatment to significantly improve the PCE of completely fabricated PVSCs from 18.7% to 20.13%. Meanwhile, the stability of the treated devices without any encapsulation remarkably improves, with 70% PCE maintained under ambient conditions after a 500-hour maximum-power-point tracking test, while the control unencapsulated device will completely break down within 100 hours. Equally important is that this post-device treatment shows a special stitching effect', namely repairing the as-fabricated poor devices' by healing the defects of the perovskite active region, and can improve the PCE by over 900%. We also experimentally and theoretically study the fundamental mechanism of the improvement. Consequently, our approach greatly improves the production yield of high-quality PVSCs and their module performances as well as the reduction of lead-waste. Additionally, the treatment is an off-the-shelf post-device approach that can be integrated into any existing perovskite-device fabrication, offering a general strategy to improve the stability and performance of perovskite optoelectronic devices.
引用
收藏
页码:2253 / 2262
页数:10
相关论文
共 57 条
[1]   Revealing a Discontinuity in the Degradation Behavior of CH3NH3PbI3 during Thermal Operation [J].
Alberti, Alessandra ;
Deretzis, Ioannis ;
Mannino, Giovanni ;
Smecca, Emanuele ;
Sanzaro, Salvatore ;
Numata, Youhei ;
Miyasaka, Tsutomu ;
La Magna, Antonino .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (25) :13577-13585
[2]   Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells [J].
Aristidou, Nicholas ;
Eames, Christopher ;
Sanchez-Molina, Irene ;
Bu, Xiangnan ;
Kosco, Jan ;
Islam, M. Saiful ;
Haque, Saif A. .
NATURE COMMUNICATIONS, 2017, 8
[3]   Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells [J].
Bae, Soohyun ;
Kim, Seongtak ;
Lee, Sang-Won ;
Cho, Kyung Jin ;
Park, Sungeun ;
Lee, Seunghun ;
Kang, Yoonmook ;
Lee, Hae-Seok ;
Kim, Donghwan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (16) :3091-3096
[4]   Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers [J].
Bella, Federico ;
Griffini, Gianmarco ;
Correa-Baena, Juan-Pablo ;
Saracco, Guido ;
Gratzel, Michael ;
Hagfeldt, Anders ;
Turri, Stefano ;
Gerbaldi, Claudio .
SCIENCE, 2016, 354 (6309) :203-206
[5]  
Bi DQ, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.142, 10.1038/nenergy.2016.142]
[6]   High-Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphile-Modified CH3NH3PbI3 [J].
Bi, Dongqin ;
Gao, Peng ;
Scopelliti, Rosario ;
Oveisi, Emad ;
Luo, Jingshan ;
Graetzel, Michael ;
Hagfeldt, Anders ;
Nazeeruddin, Mohammad Khaja .
ADVANCED MATERIALS, 2016, 28 (15) :2910-2915
[7]   Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells [J].
Bryant, Daniel ;
Aristidou, Nicholas ;
Pont, Sebastian ;
Sanchez-Molina, Irene ;
Chotchunangatchaval, Thana ;
Wheeler, Scot ;
Durrant, James R. ;
Haque, Saif A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) :1655-1660
[8]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[9]   Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling [J].
Cheacharoen, Rongrong ;
Rolston, Nicholas ;
Harwood, Duncan ;
Bush, Kevin A. ;
Dauskardt, Reinhold H. ;
McGehee, Michael D. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (01) :144-150
[10]   Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability [J].
Christians, Jeffrey A. ;
Schulz, Philip ;
Tinkham, Jonathan S. ;
Schloemer, Tracy H. ;
Harvey, Steven P. ;
de Villers, Bertrand J. Tremolet ;
Sellinger, Alan ;
Berry, Joseph J. ;
Luther, Joseph M. .
NATURE ENERGY, 2018, 3 (01) :68-74