Parameters identification for a photovoltaic module: comparison between PSO, GA and CS metaheuristic optimisation algorithms

被引:0
作者
Ben Ali, Ines [1 ]
Naouar, Mohamed Wissem [1 ]
Monmasson, Eric [2 ]
机构
[1] Univ Tunis El Manar, Ecole Natl Ingenieurs Tunis, LR11ES15 Lab Syst Elect, Tunis 1002, Tunisia
[2] SATIE IUP GEII, Rue Eragny, F-95031 Cergy Pantoise, France
关键词
photovoltaic generator; parameters identification; cuckoo search; PSO; particle swarm optimisation; genetic algorithm; PARTICLE SWARM OPTIMIZATION; ARTIFICIAL BEE COLONY; SOLAR-CELL MODELS; EXTRACTION; VALIDATION; VARIANTS; SYSTEM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the last decade, metaheuristic optimisation algorithms became widely used for parameter identification of PV cells/modules. For this purpose, this paper presents a comparative study between three metaheuristic optimisation algorithms: genetic algorithm (GA), particle swarm optimisation (PSO) and cuckoo search (CS). The presented process for PV-cell parameters estimation is particularly based on: (i) a simplified analytical model of a PV cell; and (ii) only three I-V curve points that are always available from technical data. The comparative study showed that GA is not appropriate to be used in parameter estimation of the PV model. The CS algorithm exhibited its efficiency over other algorithms in terms of estimation accuracy and easiness of implementation. However, PSO and particularly the hybrid PSO combined with Pattern Search algorithm (PSO-PS) appeared to be the most promising in terms of computational efficiency by offering faster speed convergence to the global optimum solution with few tuned parameters.
引用
收藏
页码:211 / 230
页数:20
相关论文
共 76 条
  • [1] A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination
    Alam, Mahamad Nabab
    Das, Biswarup
    Pant, Vinay
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2015, 128 : 39 - 52
  • [2] A new estimation approach for determining the I-V characteristics of solar cells
    AlRashidi, M. R.
    AlHajri, M. F.
    El-Naggar, K. M.
    Al-Othman, A. K.
    [J]. SOLAR ENERGY, 2011, 85 (07) : 1543 - 1550
  • [3] AlRashidi M.R., 2013, WORLD ACAD SCI ENG T, DOI [10.5281/zenodo.1072583, DOI 10.5281/ZENODO.1072583]
  • [4] AlRashidi M.R., 2012, P 5 WSEAS WORLD C AP, V2, P80
  • [5] AlRashidi M.R., 2014, 2 INT C ADV ENG SCI
  • [6] Adaptive neuro-fuzzy inference system based maximum power point tracking for stand-alone photovoltaic system
    Amara, Karima
    Malek, Ali
    Bakir, Toufik
    Fekik, Arezki
    Azar, Ahmad Taher
    Almustafa, Khaled Mohamad
    Bourennane, El-Bay
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 33 (04) : 311 - 321
  • [7] [Anonymous], 2011, 2011 INT C EL INF CO, DOI DOI 10.1109/ICEICE.2011.5777246
  • [8] Parameter identification for solar cell models using harmony search-based algorithms
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    [J]. SOLAR ENERGY, 2012, 86 (11) : 3241 - 3249
  • [9] Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints
    Bana, Sangram
    Saini, R. P.
    [J]. RENEWABLE ENERGY, 2017, 101 : 1299 - 1310
  • [10] A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel
    Bastidas-Rodriguez, J. D.
    Petrone, G.
    Ramos-Paja, C. A.
    Spagnuolo, G.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 131 : 38 - 54