Photonic split-second induced mesoporous TiO2-Graphene architectures for efficient sodium-ion batteries

被引:27
作者
Ambade, Rohan B. [1 ]
Veerasubramani, Ganesh Kumar [2 ]
Ambade, Swapnil B. [3 ]
Christy, Maria [4 ]
Eom, Wonsik [1 ]
Shin, Hwansoo [1 ,5 ]
Kim, Young-Beom [4 ]
Kim, Dong-Won [2 ]
Han, Tae Hee [1 ,5 ]
机构
[1] Hanyang Univ, Dept Organ & Nano Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Chem Engn, Seoul 04763, South Korea
[3] Univ Maryland Baltimore Cty, Dept Chem & Biochem, Baltimore, MD 21250 USA
[4] Hanyang Univ, Dept Mech Convergence Engn, Seoul 04763, South Korea
[5] Hanyang Univ, Human Tech Convergence Program, Seoul 04763, South Korea
关键词
Intense pulsed light; Mesoporous; rGO-TiO2; nanocomposite; Sodium-ion batteries; Anodes; ADVANCED ANODE MATERIAL; GRAPHENE OXIDE; RUTILE TIO2; ELECTRODE MATERIALS; ANATASE TIO2; PERFORMANCE; STORAGE; REDUCTION; LIGHT; DOTS;
D O I
10.1016/j.carbon.2021.03.028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable sodium-ion batteries (SIBs) have received significant attention as a promising alternative to traditional lithium-ion counterparts for large-scale energy storage applications owing to the low cost and abundance of sodium resources. Herein, we demonstrate the photonic irradiated mesoporous reduced graphene oxide (rGO)-TiO2 nanocomposite architectures using environmentally benign, ultrafast splitsecond (millisecond) intense pulsed light (IPL) process at room temperature. The photonic IPL irradiation spontaneously triggers the deoxygenation of graphene oxide (GO) and the simultaneous structural engineering of TiO2 nanocomposites. The precisely controlled IPL irradiation (energy density of 10 J cm(-2)) exhibits excellent conductivity, high surface area, and outstanding electrochemical performance as a green anode material for SIBs. The photonic IPL irradiated rGO-TiO2 nanocomposite delivers a high reversible capacity of 244 mAh g(-1) at 0.1 Ag-1, a high rate performance of 112 mAh g(-1) at 1 Ag-1, and high cycling stability compared to pristine GO-TiO2 and conventional furnace annealed rGO-TiO2 (FHrGO-TiO2) nanocomposites. The detailed electrochemical analysis suggests that the improved capacitance contribution results from the fast kinetics of the IPL irradiated rGO-TiO2 nanocomposite anode. This work provides new insight into the fabrication of versatile, cost-effective techniques for developing advanced electrode materials for energy applications. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:332 / 344
页数:13
相关论文
共 47 条
  • [1] Kinetically controlled low-temperature solution-processed mesoporous rutile TiO2 for high performance lithium-ion batteries
    Ambade, Rohan B.
    Koh, Ki Hwan
    Ambade, Swapnil B.
    Eom, Wonsik
    Noh, Sung Hyun
    Koo, Chong Min
    Kim, Seong Hun
    Han, Tae Hee
    [J]. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 80 : 667 - 676
  • [2] Low temperature chemically synthesized rutile TiO2 photoanodes with high electron lifetime for organic dye-sensitized solar cells
    Ambade, Swapnil B.
    Ambade, Rohan B.
    Mane, Rajaram S.
    Lee, Go-Woon
    Shaikh, ShoyebMohamad F.
    Patil, Supriya A.
    Joo, Oh-Shim
    Han, Sung-Hwan
    Lee, Soo-Hyoung
    [J]. CHEMICAL COMMUNICATIONS, 2013, 49 (28) : 2921 - 2923
  • [3] Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/nmat2612, 10.1038/NMAT2612]
  • [4] Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling
    Chen, Chaoji
    Wen, Yanwei
    Hu, Xianluo
    Ji, Xiulei
    Yan, Mengyu
    Mai, Liqiang
    Hu, Pei
    Shan, Bin
    Huang, Yunhui
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [5] The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles
    Chen, Jun Song
    Lou, Xiong Wen
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (09) : 2905 - 2908
  • [6] Chemical reduction of graphene oxide: a synthetic chemistry viewpoint
    Chua, Chun Kiang
    Pumera, Martin
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (01) : 291 - 312
  • [7] Controlling processing temperatures and self-limiting behaviour in intense pulsed sintering by tailoring nanomaterial shape distribution
    Dexter, M.
    Bhandari, R.
    Chang, C-H.
    Malhotra, R.
    [J]. RSC ADVANCES, 2017, 7 (89) : 56395 - 56405
  • [8] Chemically Bonded TiO2-Bronze Nanosheet/Reduced Graphene Oxide Hybrid for High-Power Lithium Ion Batteries
    Etacheri, Vinodkumar
    Yourey, Joseph E.
    Bartlett, Bart M.
    [J]. ACS NANO, 2014, 8 (02) : 1491 - 1499
  • [9] Nanostructured Electrode Materials for Advanced Sodium-Ion Batteries
    Fang, Yongjin
    Yu, Xin-Yao
    Lou, Xiong Wen
    [J]. MATTER, 2019, 1 (01) : 90 - 114
  • [10] Photothermal Deoxygenation of Graphene Oxide for Patterning and Distributed Ignition Applications
    Gilje, Scott
    Dubin, Sergey
    Badakhshan, Alireza
    Farrar, Jabari
    Danczyk, Stephen A.
    Kaner, Richard B.
    [J]. ADVANCED MATERIALS, 2010, 22 (03) : 419 - +