The fractal nature of the three-phase boundary: A heuristic approach to the degradation of nanostructured solid oxide fuel cell anodes

被引:58
作者
Bertei, A. [1 ]
Ruiz-Trejo, E. [1 ]
Kareh, K. [1 ]
Yufit, V. [1 ]
Wang, X. [2 ]
Tariq, F. [1 ]
Brandon, N. P. [1 ]
机构
[1] Imperial Coll London, Dept Earth Sci & Engn, London SW7 2AZ, England
[2] Imperial Coll London, Dept Mat, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Anode degradation; Coarsening; Tomography; Infiltration; Electrochemical impedance spectroscopy; FOCUSED-ION-BEAM; X-RAY TOMOGRAPHY; MICROSTRUCTURAL EVOLUTION; REDOX CYCLES; SOFC ANODES; NICKEL; ELECTRODES; QUANTIFICATION; SIMULATION; RECONSTRUCTION;
D O I
10.1016/j.nanoen.2017.06.028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nickel/zirconia-based nanostructured electrodes for solid oxide fuel cells suffer from poor stability even at intermediate temperature. This study quantifies the electrochemical and microstructural degradation of nanostructured electrodes by combining 3D tomography, electrochemical impedance spectroscopy (EIS) and mechanistic modeling. For the first time, the electrochemical degradation of nanostructured electrodes is quantified according to the fractal nature of the three-phase boundary (TPB). Using this hypothesis an excellent match between modeling and the electrochemical response is found. The origin of the degradation in microstructure and electrochemical performance can be found in the initial fractal roughness of the TPB at a length scale not detectable with state-of-the-art tomography at 30 nm resolution. This additionally implies that the hydrogen electro-oxidation takes place within 4 nm from the geometric TPB line, revealing that the electrochemical reaction zone cannot be regarded anymore as a one-dimensional line when dealing with nanoparticles.
引用
收藏
页码:526 / 536
页数:11
相关论文
共 62 条
[1]  
[Anonymous], COMPUTATIONAL MATH M, DOI DOI 10.1155/2015/536943
[2]   Guidelines for the Rational Design and Engineering of 3D Manufactured Solid Oxide Fuel Cell Composite Electrodes [J].
Bertei, A. ;
Tariq, F. ;
Yufit, V. ;
Ruiz-Trejo, E. ;
Brandon, N. P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :F89-F98
[3]   Validation of a physically-based solid oxide fuel cell anode model combining 3D tomography and impedance spectroscopy [J].
Bertei, A. ;
Ruiz-Trejo, E. ;
Tariq, F. ;
Yufit, V. ;
Atkinson, A. ;
Brandon, N. P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (47) :22381-22393
[4]   Percolating behavior of sintered random packings of spheres [J].
Bertei, A. ;
Choi, H. -W. ;
Pharoah, J. G. ;
Nicolella, C. .
POWDER TECHNOLOGY, 2012, 231 :44-53
[5]   Intermediate temperature solid oxide fuel cells [J].
Brett, Daniel J. L. ;
Atkinson, Alan ;
Brandon, Nigel P. ;
Skinner, Stephen J. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (08) :1568-1578
[6]   Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2.6H2O in comparison to Co(NO3)2.6H2O and Ca(NO3)2.4H2O [J].
Brockner, Wolfgang ;
Ehrhardt, Claus ;
Gjikaj, Mimoza .
THERMOCHIMICA ACTA, 2007, 456 (01) :64-68
[7]   Change of an anode's microstructure morphology during the fuel starvation of an anode-supported solid oxide fuel cell [J].
Brus, Grzegorz ;
Miyoshi, Kota ;
Iwai, Hiroshi ;
Saito, Motohiro ;
Yoshida, Hideo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (21) :6927-6934
[8]   Improved Solid Oxide Fuel Cell Performance with Nanostructured Electrolytes [J].
Chao, Cheng-Chieh ;
Hsu, Ching-Mei ;
Cui, Yi ;
Prinz, Fritz B. .
ACS NANO, 2011, 5 (07) :5692-5696
[9]   Simulation of coarsening in three-phase solid oxide fuel cell anodes [J].
Chen, Hsun-Yi ;
Yu, Hui-Chia ;
Cronin, J. Scott ;
Wilson, James R. ;
Barnett, Scott A. ;
Thornton, Katsuyo .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1333-1337
[10]   Electrochemically modified, robust solid oxide fuel cell anode for direct-hydrocarbon utilization [J].
Choi, Yoonseok ;
Brown, Evan C. ;
Haile, Sossina M. ;
Jung, WooChul .
NANO ENERGY, 2016, 23 :161-171