Boundaries of cocompact proper CAT(0) spaces

被引:18
作者
Geoghegan, Ross [1 ]
Ontaneda, Pedro [1 ]
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
关键词
D O I
10.1016/j.top.2006.12.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proper CAT(0) metric space X is cocompact if it has a compact generating domain with respect to its full isometry group. Any proper CAT(0) space, cocompact or not, has a compact metrizable boundary at infinity partial derivative infinity X; indeed, up to homeomorphism, this boundary is arbitrary. However, cocompactness imposes restrictions on what the boundary can be. Swenson showed that the boundary of a cocompact X has to be finite-dimensional. Here we show more: the dimension of a,,X has to be equal to the global tech cohomological dimension of partial derivative infinity X. For example: a compact manifold with non-empty boundary cannot be partial derivative infinity X with X cocompact. We include two consequences of this topological/geometric fact: (1) The dimension of the boundary is a quasi-isometry invariant of CAT(0) groups. (2) Geodesic segments in a cocompact X can "almost" be extended to geodesic rays, i.e. X is almost geodesically complete. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:129 / 137
页数:9
相关论文
共 50 条
  • [41] FIXED POINT IN CAT (0) SPACES
    Beg, Ismat
    Abbas, Mujahid
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 48 (01) : 51 - 59
  • [42] Conformal deformations of CAT(0) spaces
    Lytchak, Alexander
    Stadler, Stephan
    MATHEMATISCHE ANNALEN, 2019, 373 (1-2) : 155 - 163
  • [43] Invariant approximation for CAT(0) spaces
    Razani, A.
    Salahifard, H.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) : 2421 - 2425
  • [44] ON THE HALPERN ITERATION IN CAT(0) SPACES
    Khatibzadeh, Hadi
    Ranjbar, Sajad
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (03) : 155 - 165
  • [45] Weak topology on CAT(0) spaces
    Alexander Lytchak
    Anton Petrunin
    Israel Journal of Mathematics, 2023, 255 : 763 - 781
  • [46] Tits rigidity of CAT(0) group boundaries
    Chao, Khek Lun Harold
    Swenson, Eric
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (01): : 429 - 444
  • [47] Homotopy of ends and boundaries of CAT(0) groups
    G. Conner
    M. Mihalik
    S. Tschantz
    Geometriae Dedicata, 2006, 120 : 1 - 17
  • [48] Boundaries and JSJ Decompositions of CAT(0)-Groups
    Panos Papasoglu
    Eric Swenson
    Geometric and Functional Analysis, 2009, 19 : 558 - 590
  • [49] DENSE SUBSETS OF BOUNDARIES OF CAT(0) GROUPS
    Hosaka, Tetsuya
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (04): : 1057 - 1063
  • [50] Cat(0) boundaries of truncated hyperbolic space
    Ruane, Kim
    Topology Proceedings, Vol 29, No 1, 2005, 2005, 29 (01): : 317 - 331