Almost compact breathers in anharmonic lattices near the continuum limit

被引:36
作者
Rosenau, P [1 ]
Schochet, S [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1103/PhysRevLett.94.045503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certain strictly anharmonic one-dimensional lattices support discrete breathers over a macroscopic localized domain that in the continuum limit becomes exactly compact. The discrete breather tails decay at a double-exponential rate, so such systems can store energy locally, especially since discrete breathers appear to be stable for amplitudes below a sharp stability threshold. The effective width of other solutions broadens over time, but, under appropriate conditions, only after a positive waiting time. The continuum limit of a planar hexagonal lattice also supports a compact breather.
引用
收藏
页数:4
相关论文
共 17 条
[1]  
Aubry S, 2001, DISCRETE CONT DYN-B, V1, P271
[2]   Localizing energy through nonlinearity and discreteness [J].
Campbell, DK ;
Flach, S ;
Kivshar, YS .
PHYSICS TODAY, 2004, 57 (01) :43-49
[3]   Exact discrete breather compactons in nonlinear Klein-Gordon lattices [J].
Comte, JC .
PHYSICAL REVIEW E, 2002, 65 (06)
[4]   Shape profile of compactlike discrete breathers in nonlinear dispersive lattice systems [J].
Dey, B ;
Eleftheriou, M ;
Flach, S ;
Tsironis, GP .
PHYSICAL REVIEW E, 2002, 65 (01)
[5]   Breather compactons in nonlinear Klein-Gordon systems [J].
Dinda, PT ;
Remoissenet, M .
PHYSICAL REVIEW E, 1999, 60 (05) :6218-6221
[6]   EXISTENCE OF LOCALIZED EXCITATIONS IN NONLINEAR HAMILTONIAN LATTICES [J].
FLACH, S .
PHYSICAL REVIEW E, 1995, 51 (02) :1503-1507
[7]   CONDITIONS ON THE EXISTENCE OF LOCALIZED EXCITATIONS IN NONLINEAR DISCRETE-SYSTEMS [J].
FLACH, S .
PHYSICAL REVIEW E, 1994, 50 (04) :3134-3142
[8]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[9]   Existence of breathers on FPU lattices [J].
James, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (06) :581-586
[10]   Dark compactlets [J].
Kevrekidis, PG ;
Konotop, VV ;
Takeno, S .
PHYSICS LETTERS A, 2002, 299 (2-3) :166-172