CO2 capture performance of calcium-based synthetic sorbent with hallow core-shell structure under calcium looping conditions

被引:94
作者
Ma, Xiaotong [1 ]
Li, Yingjie [1 ]
Duan, Lunbo [2 ]
Anthony, Edward [3 ]
Liu, Hantao [4 ]
机构
[1] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Shandong, Peoples R China
[2] Southeast Univ, Minist Educ, Key Lab Energy Thermal Convers & Control, Nanjing 210096, Jiangsu, Peoples R China
[3] Cranfield Univ, Ctr Combust & CCS, Cranfield MK43 0AL, Beds, England
[4] North Univ China, Sch Energy & Power Engn, Taiyuan 030051, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbide slag; Carbon template; Hydrothermal carbonization; Calcium looping; CO2; capture; THERMOCHEMICAL ENERGY-STORAGE; CARBIDE SLAG; HYDROGEN-PRODUCTION; HIGHLY EFFICIENT; CAO; STEAM; ADSORPTION; STABILITY; COMPOSITES; PELLETS;
D O I
10.1016/j.apenergy.2018.05.008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A novel calcium-based synthetic CO2 sorbent with hollow core-shell structure was prepared by a carbon microsphere template route where carbide slag, alumina cement and glucose were employed as the low-cost calcium precursor, support and carbon source, respectively. The effects of the alumina cement addition, the precalcination temperature during the preparation process, the carbon template addition and calcination conditions on CO2 capture performances of the calcium-based synthetic sorbents were studied during calcium looping cycles. The synthetic sorbent containing 5 wt.% alumina cement possesses the highest CO2 capture capacity during calcium looping cycles, which is mainly composed of CaO and Ca12Al14O33. The CO2 capture capacities of the synthetic sorbent under mild and severe calcination conditions can retain 0.37 and 0.29 g/g after 20 cycles, which are 57% and 99% higher than those of carbide slag under the same conditions, respectively. The synthetic sorbent possesses a hollow micro-sphere morphology with a nano-structured shell and meso-porous structure, which decreases the diffusion resistance of CO2. Periodic density functional theory (DFT) calculations are used to explain why Ca12Al14O33 can effectively retard both agglomeration and sintering of the synthetic sorbent. The hollow core-shell model is proposed to explain the CO2 capture mechanism of the synthetic sorbent. For the same CO2 capture efficiency, the energy consumption in the calciner using the synthetic sorbent is much lower than those using carbide slag and natural limestone. This work designs a good method to prepare the hollow sphere-structured synthetic sorbents with high CO2 capture capacity and provides a promising way to integrate efficient CO2 capture with the utilization of industrial waste.
引用
收藏
页码:402 / 412
页数:11
相关论文
共 47 条
  • [1] A review of developments in carbon dioxide storage
    Aminu, Mohammed D.
    Nabavi, Seyed Ali
    Rochelle, Christopher A.
    Manovic, Vasilije
    [J]. APPLIED ENERGY, 2017, 208 : 1389 - 1419
  • [2] Improving the stability of synthetic CaO-based CO2 sorbents by structural promoters
    Antzara, Andy
    Heracleous, Eleni
    Lemonidou, Angeliki A.
    [J]. APPLIED ENERGY, 2015, 156 : 331 - 343
  • [3] BARTL H, 1970, NEUES JB MINERALOGIE, V1970
  • [4] Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power
    Benitez-Guerrero, Monica
    Manuel Valverde, Jose
    Perejon, Antonio
    Sanchez-Jimenez, Pedro E.
    Perez-Maqueda, Luis A.
    [J]. APPLIED ENERGY, 2018, 210 : 108 - 116
  • [5] Calcium-Looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture
    Benitez-Guerrero, Monica
    Manuel Valverde, Jose
    Sanchez-Jimenez, Pedro E.
    Perejon, Antonio
    Perez-Maqueda, Luis A.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 2343 - 2355
  • [6] A shrinking core model for steam hydration of CaO-based sorbents cycled for CO2 capture
    Blarney, John
    Zhao, Ming
    Manovic, Vasilije
    Anthony, Edward J.
    Dugwell, Denis R.
    Fennell, Paul S.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2016, 291 : 298 - 305
  • [7] Synthesis of Highly Efficient, Ca-Based, Al2O3-Stabilized, Carbon Gel-Templated CO2 Sorbents
    Broda, Marcin
    Mueller, Christoph R.
    [J]. ADVANCED MATERIALS, 2012, 24 (22) : 3059 - 3064
  • [8] Burguete P, 2016, GREEN CHEM, V18, P1051, DOI [10.1039/C5GC02296G, 10.1039/c5gc02296g]
  • [9] CO2 capture of calcium based sorbents developed by sol-gel technique in the presence of steam
    Chen, Huichao
    Zhang, Pingping
    Duan, Yufeng
    Zhao, Changsui
    [J]. CHEMICAL ENGINEERING JOURNAL, 2016, 295 : 218 - 226
  • [10] Biomass-derived carbon: synthesis and applications in energy storage and conversion
    Deng, Jiang
    Li, Mingming
    Wang, Yong
    [J]. GREEN CHEMISTRY, 2016, 18 (18) : 4824 - 4854