Reproducing kernels, Englis algebras and some applications

被引:19
作者
Karaev, Mubariz T. [1 ,2 ]
Gurdal, Mehmet [3 ]
Huban, Mualla Birgul [3 ]
机构
[1] Natl Acad Sci Azerbaijan, Inst Math & Mech, B Vagabzade St 9, Baku 370141, Azerbaijan
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
关键词
reproducing kernel; Berezin symbol; Riccati equation; invariant subspace; Toeplitz operator; Hardy space; EXTENDED EIGENVALUES; BEREZIN TRANSFORM; EIGENVECTORS; INVARIANT; OPERATORS;
D O I
10.4064/sm8385-4-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of Englis algebras, defined in terms of reproducing kernels and Berezin symbols. Such algebras were apparently first investigated by Englis (1995). Here we give some new results on Englis C*-algebras on abstract reproducing kernel Hilbert spaces and some applications to various questions of operator theory. In particular, we give applications to Riccati operator equations, zero Toeplitz products, and the existence of invariant subspaces for some operators.
引用
收藏
页码:113 / 141
页数:29
相关论文
共 41 条
[1]   AN INVARIANT VOLUME-MEAN-VALUE PROPERTY [J].
AHERN, P ;
FLORES, M ;
RUDIN, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (02) :380-397
[2]   A theorem of Brown-Halmos type for Bergman space Toeplitz operators [J].
Ahern, P ;
Cuckovic, Z .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 187 (01) :200-210
[3]   ZERO PRODUCTS OF TOEPLITZ OPERATORS [J].
Aleman, Alexandru ;
Vukotic, Dragan .
DUKE MATHEMATICAL JOURNAL, 2009, 148 (03) :373-403
[4]   On extended eigenvalues and extended eigenvectors of truncated shift [J].
Alkanjo, Hasan .
CONCRETE OPERATORS, 2013, 1 :19-27
[5]  
Ash J., 2012, INT MATH FORUM, V7, P153
[6]  
Axler S, 1998, INDIANA U MATH J, V47, P387
[7]  
Axler S, 1998, STUD MATH, V127, P113
[8]  
Axler S., 1978, INTEREQU OPER TH, V1, P285, DOI [10.1007/BF01682841, DOI 10.1007/BF01682841]
[9]   Extended eigenvalues and the volterra operator [J].
Biswas, A ;
Lambert, A ;
Petrovic, S .
GLASGOW MATHEMATICAL JOURNAL, 2002, 44 :521-534
[10]   INTERTWINING RELATIONS AND EXTENDED EIGENVALUES FOR ANALYTIC TOEPLITZ OPERATORS [J].
Bourdon, Paul S. ;
Shapiro, Joel H. .
ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (03) :1007-1030