Sharp local well-posedness for a fifth-order shallow water wave equation

被引:3
作者
Chen, Wengu [1 ]
Guo, Zihua [2 ]
Liu, Zeping [3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
[3] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
关键词
Dispersive equation; Local well-posedness; Bourgain space; Initial value problem; DISPERSIVE EQUATIONS; REGULARITY;
D O I
10.1016/j.jmaa.2010.02.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the already-established local well-posedness in the range s > -5/4 of the Cauchy problem with an initial H(s)(R) data for a fifth-order shallow water wave equation is extendable to s = -5/4 by using the (F) over bar (s) space. This is sharp in the sense that the ill-posedness in the range s < -5/4 of this initial value problem is already known. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:133 / 143
页数:11
相关论文
共 17 条
  • [1] Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation
    Bejenaru, I
    Tao, T
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) : 228 - 259
  • [2] Bourgain J., 1993, Geom. Funct. Anal., V3, P107
  • [3] Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
  • [4] Well-posedness and ill-posedness for a fifth-order shallow water wave equation
    Chen, Wengu
    Liu, Zeping
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) : 2412 - 2420
  • [5] Low regularity solutions of two fifth-order KDV type equations
    Chen, Wengu
    Li, Junfeng
    Miao, Changxing
    Wu, Jiahong
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2009, 107 : 221 - 238
  • [6] GUO Z, ARXIV08121825
  • [7] Decay estimates for a class of wave equations
    Guo, Zihua
    Peng, Lizhong
    Wang, Baoxiang
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (06) : 1642 - 1660
  • [8] Global well-posedness of Korteweg-de Vries equation in H-3/4(R)
    Guo, Zihua
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (06): : 583 - 597
  • [9] Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation
    Guo, Zihua
    Wang, Baoxiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) : 3864 - 3901
  • [10] Global well-posedness of the KP-I initial-value problem in the energy space
    Ionescu, A. D.
    Kenig, C. E.
    Tataru, D.
    [J]. INVENTIONES MATHEMATICAE, 2008, 173 (02) : 265 - 304