Nitration in neurodegeneration: Deciphering the "hows" "nYs"

被引:91
作者
Reynolds, Matthew R.
Berry, Robert W.
Binder, Lester I.
机构
[1] Northwestern Univ, Feinber Sch Med, Dept Cell & Mol Biol, Chicago, IL 60611 USA
[2] Northwestern Univ, Feinber Sch Med, Cognit Neurol & Alzheimers Dis Ctr, Chicago, IL 60611 USA
关键词
D O I
10.1021/bi700430y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent literature has ushered in a new awareness of the diverse post-translational events that can influence protein folding and function. Among these modifications, protein nitration is thought to play a critical role in the onset and progression of several neurodegenerative diseases. While previously considered a late-stage epiphenomenon, nitration of protein tyrosine residues appears to be an early event in the lesions of amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. The advent of highly specific biochemical and immunological detection methods reveals that nitration occurs in vivo with biological selectively and site specificity. In fact, nitration of only a single Tyr residue is often sufficient to induce profound changes in the activity of catalytic proteins and the three-dimensional conformation of structural proteins. Presumably, nitration modifies protein function by altering the hydrophobicity, hydrogen bonding, and electrostatic properties within the targeted protein. Most importantly, however, nitrative injury may represent a unifying mechanism that explains how genetic and environmental causes of neurological disease manifest a singular phenotype. In this review and synthesis, we first examine the pathways of protein nitration in biological systems and the factors that influence site-directed nitration. Subsequently, we turn our attention to the structural implications of site-specific nitration and how it affects the function of several neurodegeneration-related proteins. These proteins include Mn superoxide dismutase and neurofilament light subunit in amyotrophic lateral sclerosis, alpha-synuclein and tyrosine hydroxylase in Parkinson's disease, and tau in Alzheimer's disease.
引用
收藏
页码:7325 / 7336
页数:12
相关论文
共 102 条
[1]   Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules [J].
Alonso, AD ;
GrundkeIqbal, I ;
Iqbal, K .
NATURE MEDICINE, 1996, 2 (07) :783-787
[2]   Peroxynitrite reactivity with amino acids and proteins [J].
Alvarez, B ;
Radi, R .
AMINO ACIDS, 2003, 25 (3-4) :295-311
[3]  
Andreassen OA, 2000, ANN NEUROL, V47, P447, DOI 10.1002/1531-8249(200004)47:4<447::AID-ANA7>3.3.CO
[4]  
2-I
[5]   Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [J].
Ara, J ;
Przedborski, S ;
Naini, AB ;
Jackson-Lewis, V ;
Trifiletti, RR ;
Horwitz, J ;
Ischiropoulos, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (13) :7659-7663
[6]   Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis [J].
Beal, MF ;
Ferrante, RJ ;
Browne, SE ;
Matthews, RT ;
Kowall, NW ;
Brown, RH .
ANNALS OF NEUROLOGY, 1997, 42 (04) :644-654
[7]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[8]   ALS, SOD AND PEROXYNITRITE [J].
BECKMAN, JS ;
CARSON, M ;
SMITH, CD ;
KOPPENOL, WH .
NATURE, 1993, 364 (6438) :584-584
[9]   ISCHEMIC-INJURY MEDIATOR [J].
BECKMAN, JS .
NATURE, 1990, 345 (6270) :27-28
[10]   Inhibition of tau polymerization by its carboxy-terminal caspase cleavage fragment [J].
Berry, RW ;
Abraha, A ;
Lagalwar, S ;
LaPointe, N ;
Gamblin, TC ;
Cryns, VL ;
Binder, LI .
BIOCHEMISTRY, 2003, 42 (27) :8325-8331