Stability and boundedness properties of certain second-order differential equations

被引:16
作者
Tunc, Cemil [1 ]
Sevli, Hamdullah [1 ]
机构
[1] Yuzuncu Yil Univ, Fac Arts & Sci, Dept Math, TR-65080 Van, Turkey
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2007年 / 344卷 / 05期
关键词
Hill equation; stability; boundedness;
D O I
10.1016/j.jfranklin.2006.02.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigated the differential equation X A(t)F(X) = P(t, X, X) in two cases; (a) P = 0 and (b) P not equal 0. For the case (a), the stability of the solution X = 0 and the uniform boundedness of all solutions of this equation are investigated; in the case (b) the boundedness of all solutions of the same equation is discussed. (c) 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:399 / 405
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 1980, ORDINARY DIFFERENTIA
[2]  
Bellman R., 1953, STABILITY THEORY DIF
[3]  
BOWNDS JM, 1973, P AM MATH SOC, V39, P169, DOI 10.2307/2039010
[4]   ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF X''+ALPHA(T)F(X)=E(T) [J].
BURTON, T ;
GRIMMER, R .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (01) :43-&
[5]  
BURTON T, 1971, PROC CAMB PHILOS S-M, V70, P77
[6]  
BURTON TA, 1971, J LOND MATH SOC, V3, P393
[7]  
Cantarelli G, 1996, B UNIONE MAT ITAL, V10A, P563
[8]  
Gallot S., 1990, RIEMANNIAN GEOMETRY
[9]  
Hale J. K., 1969, Ordinary differential equations
[10]   GLOBAL ASYMPTOTIC STABILITY OF A GENERALIZED LIENARD EQJATION [J].
HEIDEL, JW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1970, 19 (03) :629-&