An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning

被引:3
作者
Shah, Najeebullah [1 ,2 ]
Li, Jiaqi [1 ,2 ]
Li, Fanhong [1 ,2 ]
Chen, Wenchang [1 ,2 ]
Gao, Haoxiang [1 ,2 ]
Chen, Sijie [1 ,2 ]
Hua, Kui [1 ,2 ]
Zhang, Xuegong [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Automat, Bioinformat Div, BNRIST, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
来源
PATTERNS | 2020年 / 1卷 / 05期
基金
国家重点研发计划;
关键词
RNA-SEQ; DYNAMICS;
D O I
10.1016/j.patter.2020.100071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns from data without the guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic development. Results showed that a strategy combining unsupervised and supervised ML can reveal major cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility, significance, and limitation of ab initio ML knowledge discovery on complex biological problems.
引用
收藏
页数:12
相关论文
共 38 条
[1]   A comparison of automatic cell identification methods for single-cell RNA sequencing data [J].
Abdelaal, Tamim ;
Michielsen, Lieke ;
Cats, Davy ;
Hoogduin, Dylan ;
Mei, Hailiang ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
GENOME BIOLOGY, 2019, 20 (01)
[2]   Profound change is coming, but roles for humans remain [J].
Brynjolfsson, Erik ;
Mitchell, Tom .
SCIENCE, 2017, 358 (6370) :1530-1534
[3]   AI COPERNICUS 'DISCOVERS' THAT EARTH ORBITS THE SUN [J].
Castelvecchi, Davide .
NATURE, 2019, 575 (7782) :266-267
[4]   Single-Cell RNA-Seq Reveals Cellular Heterogeneity of Pluripotency Transition and X Chromosome Dynamics during Early Mouse Development [J].
Cheng, Shangli ;
Pei, Yu ;
He, Liqun ;
Peng, Guangdun ;
Reinius, Bjorn ;
Tam, Patrick P. L. ;
Jing, Naihe ;
Deng, Qiaolin .
CELL REPORTS, 2019, 26 (10) :2593-+
[5]   Making the blastocyst: lessons from the mouse [J].
Cockburn, Katie ;
Rossant, Janet .
JOURNAL OF CLINICAL INVESTIGATION, 2010, 120 (04) :995-1003
[6]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[7]   Interpretable dimensionality reduction of single cell transcriptome data with deep generative models [J].
Ding, Jiarui ;
Condon, Anne ;
Shah, Sohrab P. .
NATURE COMMUNICATIONS, 2018, 9
[8]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[10]   Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells [J].
Guo, Fan ;
Li, Lin ;
Li, Jingyun ;
Wu, Xinglong ;
Hu, Boqiang ;
Zhu, Ping ;
Wen, Lu ;
Tang, Fuchou .
CELL RESEARCH, 2017, 27 (08) :967-988