Compact Sobolev embedding theorems involving symmetry and its application

被引:9
作者
Gao, Juanjuan [1 ]
Zhao, Peihao [1 ]
Zhang, Yong [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Chizhou Univ, Dept Math & Comp Sci, Chizhou 247000, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2010年 / 17卷 / 02期
关键词
Sobolev embedding; Cylindrical symmetry; p(x)-Laplacian; Weak solution; P(X)-LAPLACIAN EQUATIONS; VARIABLE EXPONENT; SPACES; EXISTENCE; PRINCIPLE;
D O I
10.1007/s00030-009-0046-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a bounded regular domain with cylindrical symmetry, functions having such symmetry and belonging to W (1,p) can be embedded compactly into some weighted L (q) spaces, with q superior to the critical Sobolev exponent. A similar result is also obtained for variable exponent Sobolev space W (1,p(x)). Furthermore, we give a simple application to the p(x)-Laplacian problem.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 19 条
[1]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[2]  
[Anonymous], 2003, SOBOLEV SPACES
[3]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[4]  
Edmunds DE, 2002, MATH NACHR, V246, P53, DOI 10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO
[5]  
2-T
[6]   Sobolev embeddings with variable exponent [J].
Edmunds, DE ;
Rákosník, J .
STUDIA MATHEMATICA, 2000, 143 (03) :267-293
[7]  
Fan X. L., 2005, P 5 ISAAC C U CAT IT
[8]   Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations [J].
Fan, Xianling ;
Deng, Shao-Gao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (11) :3064-3075
[9]   Sobolev embedding theorems for spaces Wk,p(x)(Ω) [J].
Fan, XL ;
Shen, JS ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :749-760
[10]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852