Inverse influence of initial diameter on droplet burning rate in cold and hot ambiences: a thermal action of flame in balance with heat loss

被引:50
作者
Xu, GW
Ikegami, M [1 ]
Honma, S
Ikeda, K
Ma, XX
Nagaishi, H
Dietrich, DL
Struk, PM
机构
[1] Natl Inst Adv Ind Sci & Technol, AIST, Sapporo, Hokkaido 0628517, Japan
[2] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA
[3] Natl Ctr Micrograv Res, Cleveland, OH 44135 USA
关键词
microgravity combustion; droplet combustion; flame radiation; soot; initial diameter influence;
D O I
10.1016/S0017-9310(02)00397-6
中图分类号
O414.1 [热力学];
学科分类号
摘要
Isolated droplet burning were conducted in microgravity ambiences of different temperatures to test the initial diameter influence on droplet burning rate that shows a flame scale effect and represents an overall thermal action of flame in balance with heat loss. The coldest ambience examined was room air, which utilized a heater wire to ignite the droplet. All other ambiences hotter than 633 K were acquired through an electrically heated air chamber in a stainless steel can. An inverse influence of initial droplet diameter on burning rate was demonstrated for the cold and hot ambiences. That is, the burning rate respectively decreased and increased in the former and latter cases with raising the initial droplet diameter. The reversion between the two influences appeared gradual. In the hot ambiences the burning rate increase with increasing the initial droplet diameter was larger at higher temperatures. A "net heat" of flame that denotes the difference between "heat gain" by the droplet and "heat loss" to the flame surrounding was suggested responsible for the results. In low-temperature ambiences there is a negative net heat, and it turns gradually positive as the ambience temperature gets higher and the heat loss becomes less. Relating to luminous flame sizes and soot generation of differently sized droplets clarified that the flame radiation, both non-luminous and luminous, is determinative to the net heat in microgravity conditions. In addition, the work identified two peak values of soot generation during burning, which appeared respectively at the room temperature and at about 1000 K. The increase in ambience temperature made also bigger soot shells. The heat contribution of flame by both radiation and conduction was demonstrated hardly over 40% in the total heat required for droplet vaporization during burning in a hot ambience of 773 K. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1155 / 1169
页数:15
相关论文
共 40 条
[1]  
ABDELKHALIK SI, 1975, 15TH S INT COMB PITT, P389
[2]  
[Anonymous], P COMBUST I
[3]  
[Anonymous], 4 INT S COMB
[4]  
AVEDISIAN CT, 2001, 6 INT MICR COMB WORK, P249
[5]  
BOLT JA, 1957, 5 S INT COMB COMB I, P717
[6]   THE STRUCTURE AND STABILITY OF NONADIABATIC FLAME BALLS [J].
BUCKMASTER, J ;
JOULIN, G ;
RONNEY, P .
COMBUSTION AND FLAME, 1990, 79 (3-4) :381-392
[7]   THEORETICAL INVESTIGATION OF TRANSIENT DROPLET COMBUSTION BY CONSIDERING FLAME RADIATION [J].
CHANG, KC ;
SHIEH, JS .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1995, 38 (14) :2611-2621
[8]  
CHAO BH, 1990, 23 S INT COMB COMB I, P523
[9]  
CHO SY, 1990, 23 S INT COMB COMB I, P1611
[10]  
CHOI MY, 1996, P COMBUST INST, V26, P1243