Form-finding of frame-supported tensile membrane structures using stochastic optimisation

被引:12
作者
Dutta, Subhrajit [1 ,2 ]
Ghosh, Siddhartha [2 ]
机构
[1] Natl Inst Technol Silchar, Dept Civil Engn, Silchar 788010, Assam, India
[2] Indian Inst Technol, Struct Safety Risk & Reliabil Lab, Dept Civil Engn, Mumbai 400076, Maharashtra, India
关键词
Tensile membrane; Form-finding; Particle swarm optimisation; Minimal surface; Dynamic relaxation; SURFACES; DESIGN;
D O I
10.1016/j.istruc.2021.03.103
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
For tensile membrane structures (TMS), form-finding is the first step in design, in which the structure adopts a unique equilibrium shape based on the initial configuration of the structure and the applied initial prestress. However, the choice of a single robust numerical method for form-finding remains debatable, particularly due to the intensive computation involved. The present work proposes a novel form-finding method for TMS using a swarm intelligence algorithm. Particle swarm optimisation (PSO) is used here as the optimiser in the formfinding analysis, formulated as a (area or potential energy) minimisation problem. The computations involve stochastic PSO runs, until the structure converges to an equilibrium configuration. The proposed form-finding method is demonstrated for two study structures with different optimisation objectives. The proposed PSO-based form-finding technique is found to save significant computation cost, when compared to the most commonly used form-finding algorithm of dynamic relaxation. The PSO-based algorithm is also found to lessen arbitrary parameter selections and to be more robust to the selection of an initial TMS configuration.
引用
收藏
页码:2211 / 2221
页数:11
相关论文
共 32 条
[1]  
Barnes M., 1999, International Journal of Space Structures, V14, P89, DOI 10.1260/0266351991494722
[2]  
Bletzinger K.-U., 1999, International Journal of Space Structures, V14, P131, DOI [10.1260/0266351991494759, 10.1260/0266351991494759], DOI 10.1260/0266351991494759]
[3]   Tension membranes modelled by curvi-linear bicubic splines [J].
Brew, J. S. ;
Lewis, W. J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 72 (01) :1-21
[4]  
Dorigo M., 2004, ANT COLONY OPTIMIZAT
[5]   Analysis and Design of Tensile Membrane Structures: Challenges and Recommendations [J].
Dutta, Subhrajit ;
Ghosh, Siddhartha .
PRACTICE PERIODICAL ON STRUCTURAL DESIGN AND CONSTRUCTION, 2019, 24 (03)
[6]   Optimisation of tensile membrane structures under uncertain wind loads using PCE and kriging based metamodels [J].
Dutta, Subhrajit ;
Ghosh, Siddhartha ;
Inamdar, Mandar M. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (03) :1149-1161
[7]   Reliability-Based Design Optimization of Frame-Supported Tensile Membrane Structures [J].
Dutta, Subhrajit ;
Ghosh, Siddhartha ;
Inamdar, Mandar M. .
ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2017, 3 (02)
[8]  
Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P81, DOI 10.1109/CEC.2001.934374
[9]  
Golberg DE., 1989, GENETIC ALGORITHMS S, P36
[10]   Analysis and design of membrane structures: Results of a round robin exercise [J].
Gosling, P. D. ;
Bridgens, B. N. ;
Albrecht, A. ;
Alpermann, H. ;
Angeleri, A. ;
Barnes, M. ;
Bartle, N. ;
Canobbio, R. ;
Dieringer, F. ;
Gellin, S. ;
Lewis, W. J. ;
Mageau, N. ;
Mahadevan, R. ;
Marion, J. -M. ;
Marsden, P. ;
Milligan, E. ;
Phang, Y. P. ;
Sahlin, K. ;
Stimpfle, B. ;
Suire, O. ;
Uhlemann, J. .
ENGINEERING STRUCTURES, 2013, 48 :313-328