On the Periodic Structure of the Anisotropic Manev Problem

被引:2
作者
Garcia Guirao, Juan Luis [1 ]
Luis Roca, Jose [2 ]
Vera Lopez, Juan Antonio [2 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Hosp Marina, Murcia 30203, Spain
[2] Univ Politecn Cartagena, Acad Gen Aire, Ctr Univ Def, Santiago De La Ribera 30720, Region De Murci, Spain
关键词
Celestial mechanics; Anisotropic Manev problem; Averaging theory of dynamical systems; Periodic orbits; Primary; 70F05; 70F15; HAMILTONIAN-SYSTEMS; STABILITY;
D O I
10.1007/s12346-019-00323-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the present work is to provide sufficient conditions for the existence of periodic orbits of the first and second kind in the sense of Poincare for the Anisotropic Manev problem. Moreover, we are also able to provide information on the stability and bifurcations of the orbits obtained. The main tool that we use is the averaging theory of dynamical systems.
引用
收藏
页码:987 / 999
页数:13
相关论文
共 24 条
[1]  
Abouelmagd E.I., 2016, Appl. Math. Nonlinear Sci, V1, P123, DOI [10.21042/AMNS.2016.1.00010, DOI 10.21042/AMNS.2016.1.00010]
[2]   The effect of zonal harmonic coefficients in the framework of the restricted three-body problem [J].
Abouelmagd, Elbaz I. ;
Alhothuali, M. S. ;
Guirao, Juan L. G. ;
Malaikah, H. M. .
ADVANCES IN SPACE RESEARCH, 2015, 55 (06) :1660-1672
[3]   Numerical integration of the restricted three-body problem with Lie series [J].
Abouelmagd, Elbaz I. ;
Guirao, Juan L. G. ;
Mostafa, A. .
ASTROPHYSICS AND SPACE SCIENCE, 2014, 354 (02) :369-378
[4]   Existence and stability of triangular points in the restricted three-body problem with numerical applications [J].
Abouelmagd, Elbaz I. .
ASTROPHYSICS AND SPACE SCIENCE, 2012, 342 (01) :45-53
[5]   First kind symmetric periodic solutions of the generalized van der Waals Hamiltonian [J].
Alberti, Angelo ;
Vidal, Claudio .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (07)
[6]  
Ammar M.K., 2018, Applied Mathematics and Nonlinear Sciences, V3, P339
[7]  
[Anonymous], 2007, Springer Monographs in Mathematics
[8]  
CASASAYAS J, 1984, MEM AM MATH SOC, V52, P1
[9]   Stability and instability in the anisotropic Kepler problem [J].
Contopoulos, G ;
Harsoula, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (41) :8897-8920
[10]  
Cordani B., 2003, PROG MATH P, V29