High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents

被引:25
作者
Gao, Fashun [1 ]
Liu, Haidong [2 ]
Moroz, Vitaly [3 ]
Yang, Minbo [4 ]
机构
[1] Henan Univ Urban Construct, Dept Math & Phys, Pingdingshan 467044, Henan, Peoples R China
[2] Jiaxing Univ, Inst Math, Jiaxing 314000, Zhejiang, Peoples R China
[3] Swansea Univ, Math Dept, Bay Campus,Fabian Way, Swansea SA1 8EN, W Glam, Wales
[4] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
Coupled Hartree system; Critical nonlocal nonlinearity; Hardy-Littlewood-Sobolev inequality; NONLINEAR SCHRODINGER-EQUATIONS; PHASE-SEPARATION; STANDING WAVES; BOUND-STATES; EXISTENCE; CLASSIFICATION; UNIQUENESS; THEOREMS;
D O I
10.1016/j.jde.2021.03.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the coupled Hartree system {-Delta u + V-1(x)u = alpha(1) (vertical bar|x vertical bar(-4) * u(2))u + beta(vertical bar x vertical bar(4) * v(2))u in R-N, -Delta u + V-2(x)v = alpha(2) (vertical bar|x vertical bar(-4) * v(2))v + beta(vertical bar x vertical bar(4) * u(2))v in R-N, where N >= 5, beta > max{alpha(1), alpha(2)} >= min{alpha(1), alpha(2)} > 0, and V-1, V-2 is an element of L-N/2(R-N) boolean AND L-loc(infinity)(R-N) are nonnegative potentials. This system is critical in the sense of the Hardy-Littlewood-Sobolev inequality. For the system with V-1 = V-2 = 0 we employ moving sphere arguments in integral form to classify positive solutions and to prove the uniqueness of positive solutions up to translation and dilation, which is of independent interest. Then using the uniqueness property, we establish a nonlocal version of the global compactness lemma and prove the existence of a high energy positive solution for the system assuming that vertical bar V-1 vertical bar(LN/2(RN)) + vertical bar V-2 vertical bar(LN/2(RN)) > 0 is suitably small. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:329 / 375
页数:47
相关论文
共 56 条
[1]   On a periodic Schrodinger equation with nonlocal superlinear part [J].
Ackermann, N .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) :423-443
[2]  
Alves C.O., ARXIV181204875
[3]   Singularly perturbed critical Choquard equations [J].
Alves, Claudianor O. ;
Gao, Fashun ;
Squassina, Marco ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :3943-3988
[4]   Multi-bump solutions for Choquard equation with deepening potential well [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. ;
Yang, Minbo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
[5]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[6]  
[Anonymous], 1954, Untersuchung uiber die Elektronentheorie der Kristalle, DOI DOI 10.1515/9783112649305
[7]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[8]   Bound states for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Wang, Zhi-Qiang ;
Wei, Juncheng .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 2 (02) :353-367
[9]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[10]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477