Large subgroups of simple groups

被引:41
作者
Alavi, Seyed Hassan [1 ]
Burness, Timothy C. [2 ]
机构
[1] Bu Ali Sina Univ, Dept Math, Fac Sci, Hamadan, Iran
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
Finite simple groups; Maximal subgroups; Simple algebraic groups; Triple factorisations; FINITE EXCEPTIONAL GROUPS; MAXIMAL-SUBGROUPS; ORDERS; RANK;
D O I
10.1016/j.jalgebra.2014.08.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. A proper subgroup H of G is said to be large if the order of H satisfies the bound vertical bar H vertical bar(3) >= vertical bar G vertical bar. In this note we determine all the large maximal subgroups of finite simple groups, and we establish an analogous result for simple algebraic groups (in this context, largeness is defined in terms of dimension). An application to triple factorisations of simple groups (both finite and algebraic) is discussed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:187 / 233
页数:47
相关论文
共 46 条
[1]  
Alavi S.H., ARXIV14055276
[2]   On triple factorizations of finite groups [J].
Alavi, S. Hassan ;
Praeger, Cheryl E. .
JOURNAL OF GROUP THEORY, 2011, 14 (03) :341-360
[3]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]  
Bray JN, 2013, LOND MATH S, V407, P1, DOI 10.1017/CBO9781139192576
[6]  
Burness T.C., AUST MATH S IN PRESS
[7]   Base sizes for simple groups and a conjecture of Cameron [J].
Burness, Timothy C. ;
Liebeck, Martin W. ;
Shalev, Aner .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 98 :116-162
[8]   ON THE DEGREES OF PRIMITIVE PERMUTATION-GROUPS [J].
CAMERON, PJ ;
NEUMANN, PM ;
TEAGUE, DN .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (02) :141-149
[9]  
COHEN AM, 1992, P LOND MATH SOC, V64, P21
[10]   MAXIMAL-SUBGROUPS OF G2(2N) [J].
COOPERSTEIN, BN .
JOURNAL OF ALGEBRA, 1981, 70 (01) :23-36