Plasma-surface interaction: dynamic evolution of interfacial pattern modes during transformation process from dielectric to metallic substrate

被引:11
作者
Liu, Zhijie [1 ]
Wang, Wei [1 ]
Pang, Bolun [1 ]
Wang, Sitao [1 ]
Gao, Yuting [1 ]
Xu, Dehui [1 ]
Liu, Dingxin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, Ctr Plasma Biomed, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Shanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
plasma jet; plasma-surface interaction; interfacial pattern; ionization wave;
D O I
10.1088/1361-6463/ac0840
中图分类号
O59 [应用物理学];
学科分类号
摘要
Plasma-surface interaction is a complex system involving the codependency between the plasma and the substrate, especially for substrate's with different permittivities. Therefore, a better understanding of the dynamic evolution of interactions with different substrates is essential for optimizing the required changes of specific substrates. In this work, we report two modes of interfacial pattern formation by a pulsed helium plasma jet interacting with indium tin oxide (ITO) glass and a metal substrate, and we mainly focus on the dynamic evolution process for interfacial pattern modes during a transformation process from ITO glass to metal substrate. Pattern morphology, current-voltage characteristics, intensified charge coupled device images, and reactive species distribution are used to examine the evolution mechanism of the plasma-jet-substrate interaction. Results show that, for the ITO glass substrate, a circular interfacial pattern with plenty of streamer channels is generated while, for the metal substrate, a constricted solid spot interfacial pattern is formed; these two pattern mode transformations are realized from the glass dielectric to the metal substrate. Furthermore, during the transformation process from the dielectric to metal substrate, the pattern area is gradually decreased, while the discharge intensity, emission intensity, and local electric field gradually become stronger. Importantly, by observing the dynamic behavior of the interfacial pattern, the ionization wave on the substrate surface is stopped from spreading toward the metal direction and a bright touch point appears at the interface between the dielectric and the metal, while the surface ionization wave still spreads and has no influence on the other direction besides the metal direction. Additionally, the evolution mechanism of pattern mode transformation is discussed, which may be attributed to the difference in the substrate conductivity leading to the different distribution of the local electric field. This study is beneficial to deep insights into the nature of the plasma-surface interaction.
引用
收藏
页数:10
相关论文
共 29 条
[1]   How ionization waves (plasma bullets) in helium plasma jet interact with a dielectric and metallic substrate [J].
Akishev, Yu S. ;
Karalnik, V. B. ;
Medvedev, M. A. ;
Petryakov, A. V. ;
Trushkin, N. I. ;
Shafikov, A. G. .
INTERNATIONAL CONFERENCE - THE PHYSICS OF LOW TEMPERATURE PLASMA (PLTP-2017), 2017, 927
[2]   Computational study of the interaction of cold atmospheric helium plasma jets with surfaces [J].
Breden, Douglas ;
Raja, Laxminarayan L. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (06)
[3]   Plasma-liquid interactions: a review and roadmap [J].
Bruggeman, P. J. ;
Kushner, M. J. ;
Locke, B. R. ;
Gardeniers, J. G. E. ;
Graham, W. G. ;
Graves, D. B. ;
Hofman-Caris, R. C. H. M. ;
Maric, D. ;
Reid, J. P. ;
Ceriani, E. ;
Rivas, D. Fernandez ;
Foster, J. E. ;
Garrick, S. C. ;
Gorbanev, Y. ;
Hamaguchi, S. ;
Iza, F. ;
Jablonowski, H. ;
Klimova, E. ;
Kolb, J. ;
Krcma, F. ;
Lukes, P. ;
Machala, Z. ;
Marinov, I. ;
Mariotti, D. ;
Thagard, S. Mededovic ;
Minakata, D. ;
Neyts, E. C. ;
Pawlat, J. ;
Petrovic, Z. Lj ;
Pflieger, R. ;
Reuter, S. ;
Schram, D. C. ;
Schroter, S. ;
Shiraiwa, M. ;
Tarabova, B. ;
Tsai, P. A. ;
Verlet, J. R. R. ;
von Woedtke, T. ;
Wilson, K. R. ;
Yasui, K. ;
Zvereva, G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[4]   Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements [J].
Darny, T. ;
Pouvesle, J-M ;
Puech, V. ;
Douat, C. ;
Dozias, S. ;
Robert, Eric .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (04)
[5]   Plasma-based water purification: Challenges and prospects for the future [J].
Foster, John E. .
PHYSICS OF PLASMAS, 2017, 24 (05)
[6]   Low temperature plasma biomedicine: A tutorial review [J].
Graves, David B. .
PHYSICS OF PLASMAS, 2014, 21 (08)
[7]   The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology [J].
Graves, David B. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (26)
[8]   The impingement of a kHz helium atmospheric pressure plasma jet on a dielectric surface [J].
Guaitella, O. ;
Sobota, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (25)
[9]   Effect of a floating electrode on a plasma jet [J].
Hu, J. T. ;
Wang, J. G. ;
Liu, X. Y. ;
Liu, D. W. ;
Lu, X. P. ;
Shi, J. J. ;
Ostrikov, K. .
PHYSICS OF PLASMAS, 2013, 20 (08)
[10]   Spatio-temporal characterization of a pulsed DC atmospheric pressure plasma jet interacting with substrates [J].
Johnson, Michael J. ;
Boris, David R. ;
Petrova, Tzvetelina B. ;
Walton, Scott G. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (08)