Dirichlet forms and diffusion processes for fermion random point fields

被引:9
作者
Yoo, HJ [1 ]
机构
[1] Yonsei Univ, Univ Coll, Seoul 120749, South Korea
关键词
fermion random point fields; Gibbs measure; Dirichlet form; diffusion process;
D O I
10.1016/j.jfa.2004.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the Dirichlet forms and the associated diffusion processes on the configuration space of particles moving on the Euclidean space R-d for which certain fermion random point fields are invariant. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:143 / 160
页数:18
相关论文
共 29 条
[1]   Analysis and geometry on configuration spaces: The Gibbsian case [J].
Albeverio, S ;
Kondratiev, YG ;
Rockner, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 157 (01) :242-291
[2]   Analysis and geometry on configuration spaces [J].
Albeverio, S ;
Kondratiev, YG ;
Rockner, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (02) :444-500
[3]  
[Anonymous], 2003, PUBLICATIONS MATHEMA, DOI DOI 10.1007/S10240-003-0016-0
[4]   Asymptotics of Plancherel measures for symmetric groups [J].
Borodin, A ;
Okounkov, A ;
Olshanski, G .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (03) :481-515
[5]  
Borodin A, 1998, MATH RES LETT, V5, P799
[6]   Dirichlet forms and Dirichlet operators for infinite particle systems: Essential self-adjointness [J].
Choi, V ;
Park, YM ;
Yoo, HJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) :6509-6536
[7]  
DALEY DJ, 1988, INTRO THEORY POISSON
[8]  
FUKUSHIMA M, 1994, DIRICLE FORMS SYMMET
[9]  
GEORGII HO, 2004, CONDITIONAL INTENSIT
[10]   INFINITE-DIMENSIONAL WIENER PROCESSES WITH INTERACTION .2. REVERSIBLE MEASURES ARE CANONIC GIBBS MEASURES [J].
LANG, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 39 (04) :277-299