LOCAL UNIQUENESS PROBLEM FOR A NONLINEAR ELLIPTIC EQUATION

被引:0
作者
Chen, Miao [1 ]
Wan, Youyan [2 ]
Xiang, Chang-Lin [1 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jingzhou 434023, Peoples R China
[2] Jianghan Univ, Dept Math, Wuhan 430056, Hubei, Peoples R China
关键词
Nonlinear Schrodinger equation; concentrating solutions; local uniqueness; local Pohozaev identity; SEMICLASSICAL BOUND-STATES; SCHRODINGER-EQUATIONS; MULTI-BUMP; POTENTIALS; EXISTENCE;
D O I
10.3934/cpaa.2020048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear Schrodinger equation -epsilon(2)Delta u(epsilon) + u(epsilon) = K(x)u(epsilon)(p-1) in R-N, where N >= 3 and 2 < p < 2N/(N - 2). Under mild assumptions on the function K and using the local Pohozaev identity method developed by Deng, Lin and Yan [10], we show that multi-peak solutions to the above equation are unique for epsilon > 0 sufficiently small.
引用
收藏
页码:1037 / 1055
页数:19
相关论文
共 23 条
[1]   Bound states of nonlinear Schrodinger equations with potentials vanishing at infinity [J].
Ambrosetti, A. ;
Malchiodi, A. ;
Ruiz, D. .
JOURNAL D ANALYSE MATHEMATIQUE, 2006, 98 (1) :317-348
[2]  
Ambrosetti A, 2005, DIFFER INTEGRAL EQU, V18, P1321
[3]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[4]  
[Anonymous], ARXIV170305459
[5]  
[Anonymous], [No title captured]
[6]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[7]   Semiclassical symmetric Schrodinger equations: Existence of solutions concentrating simultaneously on several spheres [J].
Bartsch, Thomas ;
Peng, Shuangjie .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (05) :778-804
[8]   Uniqueness of positive bound states with multi-bump for nonlinear Schrodinger equations [J].
Cao, Daomin ;
Li, Shuanglong ;
Luo, Peng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (04) :4037-4063
[9]   Semi-Classical Bound States for Schrodinger Equations with Potentials Vanishing or Unbounded at Infinity [J].
Cao, Daomin ;
Peng, Shuangjie .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (12) :1566-1591
[10]   Uniqueness of positive multi-lump bound states of nonlinear Schrodinger equations [J].
Cao, DM ;
Heinz, HP .
MATHEMATISCHE ZEITSCHRIFT, 2003, 243 (03) :599-642