Bacterial Foraging Algorithm Guided by Particle Swarm Optimization for Parameter Identification of Photovoltaic Modules

被引:24
|
作者
Awadallah, Mohamed A. [1 ,2 ]
Venkatesh, Bala [3 ]
机构
[1] Zagazig Univ, Sharkia 44519, Egypt
[2] Ryerson Univ, Ctr Urban Energy, Toronto, ON M5B 2K3, Canada
[3] Ryerson Univ, Dept Elect & Comp Engn, Toronto, ON M5B 2K3, Canada
关键词
Bacterial foraging (BF); parameter identification; particle swarm optimization (PSO); photovoltaic (PV) modules; PSO-guided BF; MODEL PARAMETERS; EXTRACTION;
D O I
10.1109/CJECE.2016.2519763
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an optimization-based solution to the problem of offline parameter identification in crystalline silicon photovoltaic (PV) modules. An objective function representing the difference between computed and targeted performance is minimized using global heuristic optimization algorithms. The targeted performance signifies the values of four characteristics at standard test conditions (STCs), as given in the manufacturer datasheet. The optimization problem is solved with three different algorithms, i.e., particle swarm optimization (PSO), bacterial foraging (BF), and PSO-guided BF. On an LDK PV test module, the PSO-guided BF algorithm gives the best objective function value. Parameters of the test module are also identified through measured performance. The good matching between experimental measurements and computed performance of the test PV module validates the proposed technique, and shows the accuracy of modeling.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 50 条
  • [31] Modeling of the operating characteristics of photovoltaic modules based on particle swarm optimization
    Provensi, Lucas Lima
    Grala, Gabriel Henrique
    Junior Zukeram, Emilio Soitsi
    Alcantara, Glaucio Pedro
    Krummenauer, Rafael
    Goncalves Andrade, Cid Marcos
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2022, 41 (05)
  • [32] Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules
    Jordehi, A. Rezaee
    SOLAR ENERGY, 2018, 159 : 78 - 87
  • [33] Parameter selection and extension of particle swarm optimization algorithm
    Meng Z.
    IEEJ Transactions on Fundamentals and Materials, 2011, 131 (07) : 529 - 539
  • [34] An adaptive parameter tuning of particle swarm optimization algorithm
    Xu, Gang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4560 - 4569
  • [35] Improved particle swarm algorithm for hydrological parameter optimization
    Jiang, Yan
    Liu, Changmin
    Huang, Chongchao
    Wu, Xianing
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3207 - 3215
  • [36] PARAMETER IDENTIFICATION IN HEAT TRANSFER PROBLEMS: COMPARISON OF A GENETIC ALGORITHM AND PARTICLE SWARM OPTIMIZATION
    Cavallin, Yoann
    Luk, Jean-Daniel Lan Sun
    Lorion, Richard
    Bessafi, Miloud
    Chabriat, Jean-Pierre
    MESM '2006: 9TH MIDDLE EASTERN SIMULATION MULTICONFERENCE, 2008, : 45 - 49
  • [37] Research on Parameter Identification of Battery Model Based on Adaptive Particle Swarm Optimization Algorithm
    Zhang, D. H.
    Zhu, G. R.
    Bao, J.
    Ma, Y.
    He, S. J.
    Qiu, S.
    Chen, W.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (07) : 1362 - 1367
  • [38] Economic dispatch using particle swarm optimization with bacterial foraging effect
    Saber, Ahmed Yousuf
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 34 (01) : 38 - 46
  • [39] Bacterial Foraging Oriented by Particle Swarm Optimization Strategy for PID Tuning
    Korani, Wael M.
    Dorrah, Hassen Taher
    Emara, Hassan M.
    IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, 2009, : 445 - 450
  • [40] An improved particle swarm optimization based on bacterial foraging to airfoil design
    Xia, Lu
    Li, Ding
    Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2012, 30 (04): : 533 - 538