Bacterial Foraging Algorithm Guided by Particle Swarm Optimization for Parameter Identification of Photovoltaic Modules

被引:24
作者
Awadallah, Mohamed A. [1 ,2 ]
Venkatesh, Bala [3 ]
机构
[1] Zagazig Univ, Sharkia 44519, Egypt
[2] Ryerson Univ, Ctr Urban Energy, Toronto, ON M5B 2K3, Canada
[3] Ryerson Univ, Dept Elect & Comp Engn, Toronto, ON M5B 2K3, Canada
来源
CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE | 2016年 / 39卷 / 02期
关键词
Bacterial foraging (BF); parameter identification; particle swarm optimization (PSO); photovoltaic (PV) modules; PSO-guided BF; MODEL PARAMETERS; EXTRACTION;
D O I
10.1109/CJECE.2016.2519763
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an optimization-based solution to the problem of offline parameter identification in crystalline silicon photovoltaic (PV) modules. An objective function representing the difference between computed and targeted performance is minimized using global heuristic optimization algorithms. The targeted performance signifies the values of four characteristics at standard test conditions (STCs), as given in the manufacturer datasheet. The optimization problem is solved with three different algorithms, i.e., particle swarm optimization (PSO), bacterial foraging (BF), and PSO-guided BF. On an LDK PV test module, the PSO-guided BF algorithm gives the best objective function value. Parameters of the test module are also identified through measured performance. The good matching between experimental measurements and computed performance of the test PV module validates the proposed technique, and shows the accuracy of modeling.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 25 条
  • [11] Extraction and analysis of solar cell parameters from the illuminated current-voltage curve
    Haouari-Merbah, M
    Belhamel, M
    Tobías, I
    Ruiz, JM
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 87 (1-4) : 225 - 233
  • [12] An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE)
    Ishaque, Kashif
    Salam, Zainal
    [J]. SOLAR ENERGY, 2011, 85 (09) : 2349 - 2359
  • [13] A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model
    Ishaque, Kashif
    Salam, Zainal
    Syafaruddin
    [J]. SOLAR ENERGY, 2011, 85 (09) : 2217 - 2227
  • [14] Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
  • [15] Bacterial foraging algorithm with varying population
    Li, M. S.
    Ji, T. Y.
    Tang, W. J.
    Wu, Q. H.
    Saunders, J. R.
    [J]. BIOSYSTEMS, 2010, 100 (03) : 185 - 197
  • [16] Liu XiaoLong, 2010, 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2010), P22, DOI 10.1109/ICICISYS.2010.5658828
  • [17] Mai Xiong-fa, 2012, 2012 8th International Conference on Natural Computation, P1026, DOI 10.1109/ICNC.2012.6234588
  • [18] The fully informed particle swarm: Simpler, maybe better
    Mendes, R
    Kennedy, J
    Neves, J
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) : 204 - 210
  • [19] New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics
    Ortiz-Conde, A
    Sánchez, FJG
    Muci, J
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (03) : 352 - 361
  • [20] Passino KM, 2002, IEEE CONTR SYST MAG, V22, P52, DOI 10.1109/MCS.2002.1004010