Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations

被引:56
作者
Zhang, Zhibo [1 ,2 ]
Meyer, Kerry [3 ,4 ]
Yu, Hongbin [3 ,5 ]
Platnick, Steven [3 ]
Colarco, Peter [3 ]
Liu, Zhaoyan [6 ,7 ]
Oreopoulos, Lazaros [3 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD USA
[2] UMBC, Joint Ctr Earth Syst Technol JCET, Baltimore, MD USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[4] Univ Space Res Assoc, Goddard Earth Sci Technol & Res GESTAR, Columbia, MD USA
[5] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
[6] Sci Syst & Applicat Inc SSAI, Lanham, MD USA
[7] NASA, Langley Res Ctr, Hampton, VA 23665 USA
基金
美国国家科学基金会;
关键词
VERTICAL FEATURE MASK; OPTICAL-PROPERTIES; ABSORBING AEROSOLS; SAFARI; 2000; A-TRAIN; SOUTHERN AFRICA; ATLANTIC-OCEAN; DIURNAL CYCLE; DUST AEROSOLS; SATELLITE;
D O I
10.5194/acp-16-2877-2016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015aEuro-WaEuro-m(-2) (range of -0.03 to 0.06aEuro-WaEuro-m(-2)) at TOA. The DREs at surface and within the atmosphere are -0.15aEuro-WaEuro-m(-2) (range of -0.09 to -0.21aEuro-WaEuro-m(-2)), and 0.17aEuro-WaEuro-m(-2) (range of 0.11 to 0.24aEuro-WaEuro-m(-2)), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7aEuro-WaEuro-m(-2) (range of 0.2 to 1.2aEuro-WaEuro-m(-2)) at TOA. All our DRE computations are publicly available(1). The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the uncertainty.
引用
收藏
页码:2877 / 2900
页数:24
相关论文
共 71 条
[1]   The direct radiative effect of biomass burning aerosols over southern Africa [J].
Abel, SJ ;
Highwood, EJ ;
Haywood, JM ;
Stringer, MA .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :1999-2018
[2]   Discriminating clear sky from clouds with MODIS [J].
Ackerman, SA ;
Strabala, KI ;
Menzel, WP ;
Frey, RA ;
Moeller, CC ;
Gumley, LE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D24) :32141-32157
[3]  
[Anonymous], 1979, MODELS AEROSOLS LOWE
[4]   MODIS Cloud-Top Property Refinements for Collection 6 [J].
Baum, Bryan A. ;
Menzel, W. Paul ;
Frey, Richard A. ;
Tobin, David C. ;
Holz, Robert E. ;
Ackerman, Steve A. ;
Heidinger, Andrew K. ;
Yang, Ping .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2012, 51 (06) :1145-1163
[5]   Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask [J].
Burton, S. P. ;
Ferrare, R. A. ;
Vaughan, M. A. ;
Omar, A. H. ;
Rogers, R. R. ;
Hostetler, C. A. ;
Hair, J. W. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (05) :1397-1412
[6]   Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing [J].
Chand, D. ;
Anderson, T. L. ;
Wood, R. ;
Charlson, R. J. ;
Hu, Y. ;
Liu, Z. ;
Vaughan, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D13)
[7]   Satellite-derived direct radiative effect of aerosols dependent on cloud cover [J].
Chand, D. ;
Wood, R. ;
Anderson, T. L. ;
Satheesh, S. K. ;
Charlson, R. J. .
NATURE GEOSCIENCE, 2009, 2 (03) :181-184
[8]   Atmospheric radiative transfer modeling: a summary of the AER codes [J].
Clough, SA ;
Shephard, MW ;
Mlawer, E ;
Delamere, JS ;
Iacono, M ;
Cady-Pereira, K ;
Boukabara, S ;
Brown, PD .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 91 (02) :233-244
[9]   Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing [J].
Coddington, O. M. ;
Pilewskie, P. ;
Redemann, J. ;
Platnick, S. ;
Russell, P. B. ;
Schmidt, K. S. ;
Gore, W. J. ;
Livingston, J. ;
Wind, G. ;
Vukicevic, T. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[10]   Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth [J].
Colarco, Peter ;
da Silva, Arlindo ;
Chin, Mian ;
Diehl, Thomas .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115