Wavefronts for a nonlinear nonlocal bistable reaction-diffusion equation in population dynamics

被引:11
作者
Li, Jing [1 ]
Latos, Evangelos [2 ]
Chen, Li [2 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Univ Mannheim, Lehrstuhl Math 4, D-68131 Mannheim, Germany
基金
北京市自然科学基金;
关键词
Wavefronts; Nonlocal; Bistable; Reaction-diffusion equation; FISHER-KPP EQUATION; 2 UNSTABLE STATES; TRAVELING-WAVES; EXISTENCE;
D O I
10.1016/j.jde.2017.07.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The wavefronts of a nonlinear nonlocal bistable reaction-diffusion equation, partial derivative u/partial derivative t = partial derivative(2)u/partial derivative x(2) + u(2) (1 J(sigma) *u) - du, (t, x) is an element of (0, infinity) x R, with J(sigma) (x) = (1/sigma)J(x/sigma) and integral J(x)dx =1 are investigated in this article. It is proven that there exists a c*(sigma) such that for all c >= c*(sigma), a monotone wavefront (c, omega)) can be connected by the two positive equilibrium points. On the other hand, there exists a c*(a) such that the model admits a semi-wavefront (c*(sigma), omega) with omega(-infinity) = 0. Furthermore, it is shown that for sufficiently small sigma, the semi-wavefronts are in fact wavefronts connecting 0 to the largest equilibrium. In addition, the wavefronts converge to those of the local problem as sigma -> 0. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:6427 / 6455
页数:29
相关论文
共 21 条
[1]   BISTABLE TRAVELLING WAVES FOR NONLOCAL REACTION DIFFUSION EQUATIONS [J].
Alfaro, Matthieu ;
Coville, Jerome ;
Raoul, Gael .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) :1775-1791
[2]   Rapid traveling waves in the nonlocal Fisher equation connect two unstable states [J].
Alfaro, Matthieu ;
Coville, Jerome .
APPLIED MATHEMATICS LETTERS, 2012, 25 (12) :2095-2099
[3]   TRAVELLING WAVES FOR INTEGRO-DIFFERENTIAL EQUATIONS IN POPULATION DYNAMICS [J].
Apreutesei, Narcisa ;
Ducrot, Arnaud ;
Volpert, Vitaly .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03) :541-561
[4]  
Aronson D.G., 1974, LECT NOTES MATH
[5]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[6]   TRAVELING WAVE SOLUTIONS TO COMBUSTION MODELS AND THEIR SINGULAR LIMITS [J].
BERESTYCKI, H ;
NICOLAENKO, B ;
SCHEURER, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) :1207-1242
[7]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[8]   The non-local Fisher-KPP equation: travelling waves and steady states [J].
Berestycki, Henri ;
Nadin, Gregoire ;
Perthame, Benoit ;
Ryzhik, Lenya .
NONLINEARITY, 2009, 22 (12) :2813-2844
[9]   Global existence and asymptotic behavior of solutions to a nonlocal Fisher-KPP type problem [J].
Bian, Shen ;
Chen, Li ;
Latos, Evangelos A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 :165-176
[10]   A nonlocal reaction diffusion equation and its relation with Fujita exponent [J].
Bian, Shen ;
Chen, Li .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) :1479-1489