Deep learning applied to electroencephalogram data in mental disorders: A systematic review

被引:36
作者
de Bardeci, Mateo [1 ,2 ,3 ]
Ip, Cheng Teng [4 ,5 ]
Olbrich, Sebastian [1 ,2 ,3 ]
机构
[1] Psychiat Univ Hosp Zurich PUK, Dept Psychiat Psychotherapy & Psychosomat, Zurich, Switzerland
[2] Univ Hosp Zurich, Zurich, Switzerland
[3] Univ Zurich, Zurich, Switzerland
[4] Univ Hosp, Neurobiol Res Unit, Rigshosp, Copenhagen, Denmark
[5] Univ Copenhagen, Fac Hlth & Med Sci, Copenhagen, Denmark
关键词
Electroencephalogram; Deep learning; CNN; LSTM; Mental disorders; EEG; DIAGNOSIS; DISEASE; FUTURE;
D O I
10.1016/j.biopsycho.2021.108117
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
In recent medical research, tremendous progress has been made in the application of deep learning (DL) techniques. This article systematically reviews how DL techniques have been applied to electroencephalogram (EEG) data for diagnostic and predictive purposes in conducting research on mental disorders. EEG-studies on psychiatric diseases based on the ICD-10 or DSM-V classification that used either convolutional neural networks (CNNs) or long-short-term-memory (LSTMs) networks for classification were searched and examined for the quality of the information they contained in three domains: clinical, EEG-data processing, and deep learning. Although we found that the description of EEG acquisition and pre-processing was sufficient in most of the studies, we found, that many of them lacked a systematic characterization of clinical features. Furthermore, many studies used misguided model selection procedures or flawed testing. It is recommended that the study of psychiatric disorders using DL in the future must improve the quality of clinical data and follow state of the art model selection and testing procedures so as to achieve a higher research standard and head toward a clinical significance.
引用
收藏
页数:10
相关论文
共 65 条
[1]   Automated EEG-based screening of depression using deep convolutional neural network [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat ;
Subha, D. P. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 :103-113
[2]   Identification of Children at Risk of Schizophrenia via Deep Learning and EEG Responses [J].
Ahmedt-Aristizabal, David ;
Fernando, Tharindu ;
Denman, Simon ;
Robinson, Jonathan Edward ;
Sridharan, Sridha ;
Johnston, Patrick J. ;
Laurens, Kristin R. ;
Fookes, Clinton .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (01) :69-76
[3]   Deep learning approach for active classification of electrocardiogram signals [J].
Al Rahhal, M. M. ;
Bazi, Yakoub ;
AlHichri, Haikel ;
Alajlan, Naif ;
Melgani, Farid ;
Yager, R. R. .
INFORMATION SCIENCES, 2016, 345 :340-354
[4]   Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals [J].
Ay, Betul ;
Yildirim, Ozal ;
Talo, Muhammed ;
Baloglu, Ulas Baran ;
Aydin, Galip ;
Puthankattil, Subha D. ;
Acharya, U. Rajendra .
JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (07)
[5]   An Investigation of Various Machine and Deep Learning Techniques Applied in Automatic Fear Level Detection and Acrophobia Virtual Therapy [J].
Balan, Oana ;
Moise, Gabriela ;
Moldoveanu, Alin ;
Leordeanu, Marius ;
Moldoveanu, Florica .
SENSORS, 2020, 20 (02)
[6]   Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques [J].
Balan, Oana ;
Moise, Gabriela ;
Moldoveanu, Alin ;
Leordeanu, Marius ;
Moldoveanu, Florica .
SENSORS, 2019, 19 (07)
[7]   Electroencephalogram in humans [J].
Berger, H .
ARCHIV FUR PSYCHIATRIE UND NERVENKRANKHEITEN, 1929, 87 :527-570
[8]   The WPA-Lancet Psychiatry Commission on the Future of Psychiatry [J].
Bhugra, Dinesh ;
Tasman, Allan ;
Pathare, Soumitra ;
Priebe, Stefan ;
Smith, Shubulade ;
Torous, John ;
Arbuckle, Melissa R. ;
Langford, Alex ;
Alarcon, Renato D. ;
Chiu, Helen Fung Kum ;
First, Michael B. ;
Kay, Jerald ;
Sunkel, Charlene ;
Thapar, Anita ;
Udomratn, Pichet ;
Baingana, Florence K. ;
Kestel, Devora ;
Ng, Roger Man Kin ;
Patel, Anita ;
De Picker, Livia ;
McKenzie, Kwame Julius ;
Moussaoui, Driss ;
Muijen, Matt ;
Bartlett, Peter ;
Davison, Sophie ;
Exworthy, Tim ;
Loza, Nasser ;
Rose, Diana ;
Torales, Julio ;
Brown, Mark ;
Christensen, Helen ;
Firth, Joseph ;
Keshavan, Matcheri ;
Li, Ang ;
Onnela, Jukka-Pekka ;
Wykes, Til ;
Elkholy, Hussein ;
Kalra, Gurvinder ;
Lovett, Kate F. ;
Travis, Michael J. ;
Ventriglio, Antonio .
LANCET PSYCHIATRY, 2017, 4 (10) :775-818
[9]   Early Alzheimer's disease diagnosis based on EEG spectral images using deep learning [J].
Bi Xiaojun ;
Wang Haibo .
NEURAL NETWORKS, 2019, 114 :119-135
[10]  
Boutros N. N, 2015, NEUROPSYCHIATRIC ELE, V1, P4, DOI [10.1186/s40810-015-0008-6, DOI 10.1186/S40810-015-0008-6]