Automatic detection of retinopathy with optical coherence tomography images via a semi-supervised deep learning method

被引:15
作者
Luo, Yuemei [1 ]
Xu, Qing [2 ]
Jin, Ruibing [2 ]
Wu, Min [2 ]
Liu, Linbo [1 ,3 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
基金
英国医学研究理事会;
关键词
DIABETIC MACULAR EDEMA; CLASSIFICATION; DEGENERATION; OCT;
D O I
10.1364/BOE.418364
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Automatic detection of retinopathy via computer vision techniques is of great importance for clinical applications. However, traditional deep learning based methods in computer vision require a large amount of labeled data, which are expensive and may not be available in clinical applications. To mitigate this issue, in this paper, we propose a semi supervised deep learning method built upon pre-trained VGG-16 and virtual adversarial training (VAT) for the detection of retinopathy with optical coherence tomography (OCT) images. It only requires very few labeled and a number of unlabeled OCT images for model training. In experiments, we have evaluated the proposed method on two popular datasets. With only 80 labeled OCT images, the proposed method can achieve classification accuracies of 0.942 and 0.936, sensitivities of 0.942 and 0.936, specificities of 0.971 and 0.979, and AUCs (Area under the ROC Curves) of 0.997 and 0.993 on the two datasets, respectively. When comparing with human experts, it achieves expert level with 80 labeled OCT images and outperforms four out of six experts with 200 labeled OCT images. Furthermore, we also adopt the Gradient Class Activation Map (Grad-CAM) method to visualize the key regions that the proposed method focuses on when making predictions. It shows that the proposed method can accurately recognize the key patterns of the input OCT images when predicting retinopathy. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:2684 / 2702
页数:19
相关论文
共 32 条
[1]  
[Anonymous], 2014, Comput. Sci.
[2]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[3]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[4]   Feature Affinity-Based Pseudo Labeling for Semi-Supervised Person Re-Identification [J].
Ding, Guodong ;
Zhang, Shanshan ;
Khan, Salman ;
Tang, Zhenmin ;
Zhang, Jian ;
Porikli, Fatih .
IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (11) :2891-2902
[5]   A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images [J].
Fu, Huazhu ;
Baskaran, Mani ;
Xu, Yanwu ;
Lin, Stephen ;
Wong, Damon Wing Kee ;
Liu, Jiang ;
Tun, Tin A. ;
Mahesh, Meenakshi ;
Perera, Shamira A. ;
Aung, Tin .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 203 :37-45
[6]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[7]   Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration [J].
Karri, S. P. K. ;
Chakraborty, Debjani ;
Chatterjee, Jyotirmoy .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :579-592
[8]  
Kermany D., 2018, Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images, V3, DOI 10.17632/rscbjbr9sj
[9]   Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning [J].
Kermany, Daniel S. ;
Goldbaum, Michael ;
Cai, Wenjia ;
Valentim, Carolina C. S. ;
Liang, Huiying ;
Baxter, Sally L. ;
McKeown, Alex ;
Yang, Ge ;
Wu, Xiaokang ;
Yan, Fangbing ;
Dong, Justin ;
Prasadha, Made K. ;
Pei, Jacqueline ;
Ting, Magdalena ;
Zhu, Jie ;
Li, Christina ;
Hewett, Sierra ;
Dong, Jason ;
Ziyar, Ian ;
Shi, Alexander ;
Zhang, Runze ;
Zheng, Lianghong ;
Hou, Rui ;
Shi, William ;
Fu, Xin ;
Duan, Yaou ;
Huu, Viet A. N. ;
Wen, Cindy ;
Zhang, Edward D. ;
Zhang, Charlotte L. ;
Li, Oulan ;
Wang, Xiaobo ;
Singer, Michael A. ;
Sun, Xiaodong ;
Xu, Jie ;
Tafreshi, Ali ;
Lewis, M. Anthony ;
Xia, Huimin ;
Zhang, Kang .
CELL, 2018, 172 (05) :1122-+
[10]  
Lee CS, 2017, OPHTHALMOL RETINA, V1, P322, DOI 10.1016/j.oret.2016.12.009