Automatic Clustering Based on GA-FCM for Pattern Recognition

被引:7
作者
Gao, Yunguang [1 ]
Wang, Shicheng [1 ]
Liu, Shunbo [1 ]
机构
[1] Hong Qing High Tech Inst, Lab 301, Xian, Peoples R China
来源
SECOND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 2, PROCEEDINGS | 2009年
关键词
pattern recognition; fuzzy c-means clustering; genetic algorithm; initial clsssification number; local minimum;
D O I
10.1109/ISCID.2009.184
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aiming to the shortages of fuzzy c-means clustering applied to pattern recognition, an improved method by genetic algorithm is proposed. This method can not only automatically optimizes the classification number, but also search the global optimal solution for the clustering center. The experimental results demonstrate this proposed method is excellent for pattern recognition.
引用
收藏
页码:146 / 149
页数:4
相关论文
共 6 条
[1]  
GOLDBERG DE, 1971, GENETIC ADAPTATION C
[2]  
Holland JH, 1975, ADAPTATION NATURAL A, P5
[3]   NEW ALGORITHMS FOR SOLVING THE FUZZY CLUSTERING PROBLEM [J].
KAMEL, MS ;
SELIM, SZ .
PATTERN RECOGNITION, 1994, 27 (03) :421-428
[4]   ON CLUSTER VALIDITY FOR THE FUZZY C-MEANS MODEL [J].
PAL, NR ;
BEZDEK, JC .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (03) :370-379
[5]  
SRINVAS M, 1994, IEEE T SMC, V4, P656
[6]   The ordinal optimisation of genetic control parameters for flow shop scheduling [J].
Wang, L ;
Zhang, L ;
Zheng, DZ .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2004, 23 (11-12) :812-819