General guiding model for mobile robots and its complexity reduced neuro-fuzzy approximation

被引:12
作者
Baranyi, P [1 ]
Nagy, I [1 ]
Korondi, P [1 ]
Hashimoto, H [1 ]
机构
[1] Tech Univ Budapest, Dept Telcomm & Telemat, H-1111 Budapest, Hungary
来源
NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2 | 2000年
关键词
D O I
10.1109/FUZZY.2000.839191
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The development of techniques for autonomous mobile robot navigation has been in focus for several decades [1,]. The main objectives of this paper are twofold. One is to extend the potential based guiding (PBG) model to a more general form that can be approximated by a common type neuro-fuzzy algorithm. The extended model eliminates the strongly alternating behavior of PBG. The second is to propose a computation complexity reduction method for the general form of the neuro-fuzzy technique. Same examples are given to show the effectiveness of the extended guiding model.
引用
收藏
页码:1029 / 1032
页数:4
相关论文
共 14 条
[1]   MOTOR SCHEMA - BASED MOBILE ROBOT NAVIGATION [J].
ARKIN, RC .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1989, 8 (04) :92-112
[2]  
BRONSTEIN J, 1991, IEEE J ROBOTIC AUTOM, V7, P278
[3]  
BROOKS R, 1991, 1293 MIT
[4]  
FUKUDA T, 1999, IEEE INT FUZZ SYST C, V3, P1203
[5]  
HOFFMANN F, 1999, FUZZY LOGIC TECHNIQU
[6]  
KLEMENT EP, UNPUB INT J GEN SYST
[7]   Size reduction by interpolation in fuzzy rule bases [J].
Koczy, LT ;
Hirota, K .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1997, 27 (01) :14-25
[8]  
KOCZY LT, 1990, P INT C FL NN IIZUKA
[9]  
KUBOTA N, 1999, IEEE INT FUZZ SYST C, V2, P986
[10]  
LAMMENS J, 1993, P NATO ASI BIOL TECH