THREE NONTRIVIAL SOLUTIONS FOR A NONLINEAR ANISOTROPIC NONLOCAL EQUATION

被引:0
作者
Esfahani, Amin [1 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan 36715364, Iran
关键词
sign-constant and nodal solutions; BO-ZK operator; variational method; PARABOLIC INTEGRODIFFERENTIAL EQUATIONS; SCHRODINGER-POISSON SYSTEM; SIGN-CHANGING SOLUTIONS; SCALAR FIELD-EQUATIONS; FRACTIONAL LAPLACIANS; NODAL SOLUTIONS; POSITIVE SOLUTIONS; GROUND-STATE; EXISTENCE; REGULARITY;
D O I
10.1016/S0252-9602(18)30815-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we establish the existence of a sign-changing solution and two sign-constant solutions for nonlinear nonlocal problem involving the BO-ZK operator on bounded domain. Our main tool is constrained minimization on appropriate Nehari manifolds.
引用
收藏
页码:1296 / 1310
页数:15
相关论文
共 44 条
[1]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 1990, Variational Methods: Applications to Non-linear Partial Differential Equations and Hamiltonian Systems
[4]   Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations [J].
Barles, Guy ;
Chasseigne, Emmanuel ;
Ciomaga, Adina ;
Imbert, Cyril .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 50 (1-2) :283-304
[5]   Lipschitz regularity of solutions for mixed integro-differential equations [J].
Barles, Guy ;
Chasseigne, Emmanuel ;
Ciomaga, Adina ;
Imbert, Cyril .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6012-6060
[6]   Holder continuity of solutions of second-order non-linear elliptic integro-differential equations [J].
Barles, Guy ;
Chasseigne, Emmanuel ;
Imbert, Cyril .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (01) :1-26
[7]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[8]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[9]   Sign changing solutions of superlinear Schrodinger equations [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :25-42
[10]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313