Microporosity of a Guanidinium Organodisulfonate Hydrogen-Bonded Framework

被引:56
作者
Brekalo, Ivana [1 ]
Deliz, David E. [1 ]
Barbour, Leonard J. [3 ]
Ward, Michael D. [4 ]
Friscic, Tomislav [2 ]
Holman, K. Travis [1 ]
机构
[1] Georgetown Univ, Dept Chem, 37th & O St NW, Washington, DC 20057 USA
[2] McGill Univ, Dept Chem, Montreal, PQ H3A 0B8, Canada
[3] Univ Stellenbosch, Dept Chem & Polymer Sci, ZA-7600 Matieland, South Africa
[4] NYU, Mol Design Inst, Dept Chem, 100 Washington Sq East, New York, NY 10003 USA
关键词
gas sorption; guanidinium sulfonates; hydrogen-bonded organic frameworks; porosity; porous molecular solids; GUEST EXCHANGE; CONFINEMENT; CRYPTOPHANE-111; CRYSTALS; ROTORS; XENON;
D O I
10.1002/anie.201911861
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Guanidinium organosulfonates (GSs) are a large and well-explored archetypal family of hydrogen-bonded organic host frameworks that have, over the past 25 years, been regarded as nonporous. Reported here is the only example to date of a conventionally microporous GS host phase, namely guanidinium 1,4-benzenedisulfonate (p-G(2)BDS). p-G(2)BDS is obtained from its acetone solvate, AcMe@G(2)BDS, by single-crystal-to-single-crystal (SC-SC) desolvation, and exhibits a Type I low-temperature/pressure N-2 sorption isotherm (SA(BET)=408.7(2) m(2) g(-1), 77 K). SC-SC sorption of N-2, CO2, Xe, and AcMe by p-G(2)BDS is explored under various conditions and X-ray diffraction provides a measurement of the high-pressure, room temperature Xe and CO2 sorption isotherms. Though p-G(2)BDS is formally metastable relative to the "collapsed", nonporous polymorph, np-G(2)BDS, a sample of p-G(2)BDS survived for almost two decades under ambient conditions. np-G(2)BDS reverts to zCO(2)@p-G(2)BDS or yXe@p-G(2)BDS (y,z=variable) when pressure of CO2 or Xe, respectively, is applied.
引用
收藏
页码:1997 / 2002
页数:6
相关论文
共 44 条
[1]   Versatile and Resilient Hydrogen-Bonded Host Frameworks [J].
Adachi, Takuji ;
Ward, Michael D. .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (12) :2669-2679
[2]   Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity [J].
Atwood, JL ;
Barbour, LJ ;
Jerga, A ;
Schottel, BL .
SCIENCE, 2002, 298 (5595) :1000-1002
[3]   Crystal porosity and the burden of proof [J].
Barbour, LJ .
CHEMICAL COMMUNICATIONS, 2006, (11) :1163-1168
[4]   Molecular tectonics. Porous hydrogen-bonded networks with unprecedented structural integrity [J].
Brunet, P ;
Simard, M ;
Wuest, JD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (11) :2737-2738
[5]   Molecular Rotors Built in Porous Materials [J].
Comotti, Angiolina ;
Bracco, Silvia ;
Sozzani, Piero .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (09) :1701-1710
[6]   Engineering Switchable Rotors in Molecular Crystals with Open Porosity [J].
Comotti, Angiolina ;
Bracco, Silvia ;
Yamamoto, Atsushi ;
Beretta, Mario ;
Hirukawa, Tomofumi ;
Tohnai, Norimitsu ;
Miyata, Mikiji ;
Sozzani, Piero .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (02) :618-621
[7]   Chiral discrimination in low-density hydrogen-bonded frameworks [J].
Custelcean, R ;
Ward, MD .
CRYSTAL GROWTH & DESIGN, 2005, 5 (06) :2277-2287
[8]  
Handke M., 2017, ANGEW CHEM, V129, P14191
[9]   Encapsulation of Isolated Luminophores within Supramolecular Cages [J].
Handke, Marcel ;
Adachi, Takuji ;
Hu, Chunhua ;
Ward, Michael D. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (45) :14003-14006
[10]   The generality of architectural isomerism in designer inclusion frameworks [J].
Holman, KT ;
Martin, SM ;
Parker, DP ;
Ward, MD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (19) :4421-4431