Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 Increases Neovascularization and Blood Flow Recovery After Ischemia

被引:130
作者
Welten, Sabine M. J. [1 ,2 ]
Bastiaansen, Antonius J. N. M. [1 ,2 ]
de Jong, Rob C. M. [1 ,2 ]
de Vries, Margreet R. [1 ,2 ]
Peters, Erna A. B. [1 ,2 ]
Boonstra, Martin C. [1 ]
Sheikh, Soren P. [3 ]
La Monica, Nicola [4 ]
Kandimalla, Ekambar R. [4 ]
Quax, Paul H. A. [1 ,2 ]
Nossent, A. Yael [1 ,2 ]
机构
[1] Leiden Univ, Med Ctr, Dept Surg, NL-2300 RC Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Einthoven Lab Expt Vasc Med, NL-2300 RC Leiden, Netherlands
[3] Odense Univ Hosp, Dept Biochem & Pharmacol, DK-5000 Odense, Denmark
[4] Idera Pharmaceut, Cambridge, MA USA
关键词
collateral blood circulation; microRNAs; peripheral arterial disease; physiologic angiogenesis; ENDOTHELIAL-CELLS; EXPRESSION; GENE; ANGIOGENESIS; MIGRATION; ARTERIOGENESIS; PROLIFERATION; RECEPTOR-2; ACTIVATION; MECHANISMS;
D O I
10.1161/CIRCRESAHA.114.304747
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rationale: Effective neovascularization is crucial for recovery after cardiovascular events. Objective: Because microRNAs regulate expression of up to several hundred target genes, we set out to identify microRNAs that target genes in all pathways of the multifactorial neovascularization process. Using www.targetscan.org, we performed a reverse target prediction analysis on a set of 197 genes involved in neovascularization. We found enrichment of binding sites for 27 microRNAs in a single microRNA gene cluster. Microarray analyses showed upregulation of 14q32 microRNAs during neovascularization in mice after single femoral artery ligation. Methods and Results: Gene silencing oligonucleotides (GSOs) were used to inhibit 4 14q32 microRNAs, miR-329, miR-487b, miR-494, and miR-495, 1 day before double femoral artery ligation. Blood flow recovery was followed by laser Doppler perfusion imaging. All 4 GSOs clearly improved blood flow recovery after ischemia. Mice treated with GSO-495 or GSO-329 showed increased perfusion already after 3 days (30% perfusion versus 15% in control), and those treated with GSO-329 showed a full recovery of perfusion after 7 days (versus 60% in control). Increased collateral artery diameters (arteriogenesis) were observed in adductor muscles of GSO-treated mice, as well as increased capillary densities (angiogenesis) in the ischemic soleus muscle. In vitro, treatment with GSOs led to increased sprout formation and increased arterial endothelial cell proliferation, as well as to increased arterial myofibroblast proliferation. Conclusions: The 14q32 microRNA gene cluster is highly involved in neovascularization. Inhibition of 14q32 microRNAs miR-329, miR-487b, miR-494, and miR-495 provides a promising tool for future therapeutic neovascularization.
引用
收藏
页码:696 / +
页数:49
相关论文
共 45 条
[1]   Use of the mouse aortic ring assay to study angiogenesis [J].
Baker, Marianne ;
Robinson, Stephen D. ;
Lechertier, Tanguy ;
Barber, Paul R. ;
Tavora, Bernardo ;
D'Amico, Gabriela ;
Jones, Dylan T. ;
Vojnovic, Boris ;
Hodivala-Dilke, Kairbaan .
NATURE PROTOCOLS, 2012, 7 (01) :89-104
[2]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[3]   The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis [J].
Benetatos, Leonidas ;
Hatzimichael, Eleftheria ;
Londin, Eric ;
Vartholomatos, George ;
Loher, Phillipe ;
Rigoutsos, Isidore ;
Briasoulis, Evangelos .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2013, 70 (05) :795-814
[4]   Novel Oligonucleotides Containing Two 3′-Ends Complementary to Target mRNA Show Optimal Gene-Silencing Activity [J].
Bhagat, Lakshmi ;
Putta, Mallikarjuna Reddy ;
Wang, Daqing ;
Yu, Dong ;
Lan, Tao ;
Jiang, Weiwen ;
Sun, Zhenhua ;
Wang, Hao ;
Tang, Jimmy X. ;
La Monica, Nicola ;
Kandimalla, Ekambar R. ;
Agrawal, Sudhir .
JOURNAL OF MEDICINAL CHEMISTRY, 2011, 54 (08) :3027-3036
[5]   MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice [J].
Bonauer, Angelika ;
Carmona, Guillaume ;
Iwasaki, Masayoshi ;
Mione, Marina ;
Koyanagi, Masamichi ;
Fischer, Ariane ;
Burchfield, Jana ;
Fox, Henrik ;
Doebele, Carmen ;
Ohtani, Kisho ;
Chavakis, Emmanouil ;
Potente, Michael ;
Tjwa, Marc ;
Urbich, Carmen ;
Zeiher, Andreas M. ;
Dimmeler, Stefanie .
SCIENCE, 2009, 324 (5935) :1710-1713
[6]   Activation of the integrins α5β1 and αvβ3 and focal adhesion kinase (FAK) during arteriogenesis [J].
Cai, Wei-Jun ;
Li, Ming Bo ;
Wu, Xiaoqiong ;
Wu, Song ;
Zhu, Wu ;
Chen, Dan ;
Luo, Mingying ;
Eitenmueller, Inka ;
Kampmann, Andreas ;
Schaper, Jutta ;
Schaper, Wolfgang .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 2009, 322 (1-2) :161-169
[7]   MicroRNAs in Postischemic Vascular Repair [J].
Caporali, Andrea ;
Emanueli, Costanza .
CARDIOLOGY RESEARCH AND PRACTICE, 2012, 2012
[8]   MicroRNA-503 and the Extended MicroRNA-16 Family in Angiogenesis [J].
Caporali, Andrea ;
Emanueli, Costanza .
TRENDS IN CARDIOVASCULAR MEDICINE, 2011, 21 (06) :162-166
[9]   MicroRNA-16 and MicroRNA-424 Regulate Cell-Autonomous Angiogenic Functions in Endothelial Cells via Targeting Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1 [J].
Chamorro-Jorganes, Aranzazu ;
Araldi, Elisa ;
Penalva, Luiz O. F. ;
Sandhu, Devraj ;
Fernandez-Hernando, Carlos ;
Suarez, Yajaira .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2011, 31 (11) :2595-U578
[10]   STAT3: A critical transcription activator in angiogenesis [J].
Chen, Zhong ;
Han, Zhong Chao .
MEDICINAL RESEARCH REVIEWS, 2008, 28 (02) :185-200