Poly (vinyl alcohol) and poly (benzimidazole) blend membranes for high performance alkaline direct ethanol fuel cells

被引:46
作者
Herranz, D. [1 ]
Escudero-Cid, R. [1 ]
Montiel, M. [1 ]
Palacio, C. [2 ]
Fatas, E. [1 ]
Ocon, P. [1 ]
机构
[1] Univ Autonoma Madrid, Dept Quim Fis Aplicada, C Francisco Tomas & Valiente 7, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, Dept Fis Aplicada, C Francisco Tomas & Valiente 7, E-28049 Madrid, Spain
关键词
Fuel cells; Alkaline; Blend membrane; PVA; Ethanol; PBI; ANION-EXCHANGE MEMBRANE; POLY(VINYL ALCOHOL); DOPED POLYBENZIMIDAZOLE; NANOCOMPOSITE MEMBRANES; METHANOL; CARBON; SEPARATION; STABILITY; PALLADIUM; OXIDATION;
D O I
10.1016/j.renene.2018.05.020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A series of poly(vinyl alcohol)-blend-poly(benzimidazole) (PVA:PBI) membranes are synthesized with different ratios of PVA and PBI (2:1, 4:1, 6:1 and 8:1) using the casting method. These materials are doped in KOH 6 M solution in order to study their suitability for fuel cell applications. The Infra-red (IR) and Raman spectra confirm the successful doping of the membranes and the dimensional changes due to water and KOH uptakes during the doping are similar to other PBI-based membranes. XPS measurements are performed to evaluate the characteristics of these materials after the doping process. The thermal stability of the membranes is excellent in the range of desired temperatures (below 100 degrees C) and the conductivity values found are between 10(-2) and 10(-1) S cm(-1). These results are optimal to consider these membranes as candidates for anion exchange membranes (AEMs) and they are tested in a single cell with ethanol as fuel. The PVA:PBI 4:1 membrane have the best behaviour in fuel cell, reaching a power density of 76 mW cm(-2), approximately 50% better than the doped PBI in the same conditions. These important results can be considered highly promising for the future application of these membranes in alkaline polymer electrolyte membrane fuel cells (APEMFC). (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:883 / 895
页数:13
相关论文
共 53 条
[1]  
Anis A, 2012, INT J ELECTROCHEM SC, V7, P9174
[2]   Alkaline anion exchange membranes based on KOH-treated multilayer graphene oxide [J].
Bayer, Thomas ;
Cunning, Benjamin V. ;
Selyanchyn, Roman ;
Daio, Takeshi ;
Nishihara, Masamichi ;
Fujikawa, Shigenori ;
Sasaki, Kazunari ;
Lyth, Stephen M. .
JOURNAL OF MEMBRANE SCIENCE, 2016, 508 :51-61
[3]   Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator [J].
Benipal, Neeva ;
Qi, Ji ;
Gentile, Jacob C. ;
Li, Wenzhen .
RENEWABLE ENERGY, 2017, 105 :647-655
[4]  
Bruijn F.D., 2005, GREEN CHEM, V7, P132, DOI DOI 10.1039/B415317K
[5]   Adsorption and oxidation of K deposited on graphite [J].
Caballero, A ;
Espinos, JP ;
Fernandez, A ;
Soriano, L ;
GonzalezElipe, AR .
SURFACE SCIENCE, 1996, 364 (03) :253-265
[6]   Performance of carbon-supported palladium and palladium ruthenium catalysts for alkaline membrane direct ethanol fuel cells [J].
Carrion-Satorre, S. ;
Montiel, M. ;
Escudero-Cid, R. ;
Fierro, J. L. G. ;
Fatas, E. ;
Ocon, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (21) :8954-8962
[7]  
Castle J.E., 1983, Practical surface analysis by Auger and X-ray photoelectron spectroscopy, V6, P302, DOI DOI 10.1002/SIA.740060611
[8]   Carbon NMR investigation of the polybenzimidazole-dimethylacetamide interactions in membranes for fuel cells [J].
Conti, Fosca ;
Willbold, Sabine ;
Mammi, Stefano ;
Korte, Carsten ;
Lehnert, Werner ;
Stolten, Detlef .
NEW JOURNAL OF CHEMISTRY, 2013, 37 (01) :152-156
[9]   KOH-doped polybenzimidazole for alkaline direct glycerol fuel cells [J].
Couto, Rafaela Nunes ;
Linares, Jose J. .
JOURNAL OF MEMBRANE SCIENCE, 2015, 486 :239-247
[10]   Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization [J].
Deng, Hao ;
Wang, Dawei ;
Xie, Xu ;
Zhou, Yibo ;
Yin, Yan ;
Du, Qing ;
Jiao, Kui .
RENEWABLE ENERGY, 2016, 91 :166-177