Design of fault-tolerant on-board networks with variable switch sizes

被引:0
|
作者
Delmas, O. [1 ,2 ]
Havet, F. [3 ,4 ]
Montassier, M. [5 ,6 ]
Perennes, S. [3 ,4 ]
机构
[1] Univ Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
[2] CNRS, LaBRI, UMR 5800, F-33400 Talence, France
[3] CNRS, UNSA, I3S, COATI Project, F-06902 Sophia Antipolis, France
[4] INRIA, F-06902 Sophia Antipolis, France
[5] Univ Montpellier 2, F-34095 Montpellier 5, France
[6] CNRS, LIRMM, F-34095 Montpellier 5, France
关键词
Fault tolerance; Switching networks; Flow networks; Vulnerability;
D O I
10.1016/j.tcs.2014.09.034
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An (n, k, r)-network is a triple N = (G, in, out) where G = (V. E) is a graph and in, out are non-negative integer functions defined on V called the input and output functions, such E that for any v E V, in(v) + out(v) + deg(v) < 2r where deg(v) is the degree of v in the = vev in(v) = n' graph G. The total number of inputs is in(V) and the total number of outputs is out(V) = E v out(v)=n+ k. An (n, k, r)-network is valid, if for any faulty output function out' (that is such that 0 < oue(v) < out(v) for any v e V, and out'(V) = n), there are n edge-disjoint paths in G such that each vertex V E V is the initial vertex of in(v) paths and the terminal vertex of outi(v) paths. We investigate the design problem of determining the minimum number Ai (n, k, r) of vertices in a valid (n,k,r)-network and of constructing minimum (n, k, r)-networks, or at least valid (n, k, r)-networks with a number of vertices close to the optimal value. We first give some upper bounds on Ar(n, k, r). We show _AI (n, k, r) < 1-A-111. When r > k/2, we prove a better upper bound: /V-(n,k, r) < 7.21--22+r+kici22n 4. 0(1). Next, we establish some lower bounds. We show that if k > r, then J\i(n, k, r) > 34. We 2r2k,. improve this bound when k > 2r: Ar(n, k, r) > 3n+2+/3-3r/2 Finally, we determine.A.r(n, k, r) up to additive constants for k < 6. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 50 条
  • [21] A fault-tolerant communications switch prototype
    Loh, PKK
    Wahab, A
    MICROELECTRONICS AND RELIABILITY, 1997, 37 (08): : 1193 - 1196
  • [22] A fault-tolerant shuffleout ATM switch
    Chen, WT
    Huang, CF
    Lee, CC
    1996 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS - CONVERGING TECHNOLOGIES FOR TOMORROW'S APPLICATIONS, VOLS. 1-3, 1996, : 491 - 495
  • [23] Fault-Tolerant Topology of Dual Active Bridge Converter for On-Board Charger in Electric Vehicles
    Babalou, Milad
    Torkaman, Hossein
    Pouresmaeil, Edris
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN INDUSTRIAL ELECTRONICS, 2025, 6 (01): : 106 - 114
  • [24] DESIGN AND ANALYSIS OF FAULT-TOLERANT MULTIBUS INTERCONNECTION NETWORKS
    CAMARDA, P
    GERLA, M
    DISCRETE APPLIED MATHEMATICS, 1992, 37-8 : 45 - 64
  • [25] Design of Fault-Tolerant and Reliable Networks-on-Chip
    Wang, Junshi
    Ebrahimi, Masoumeh
    Huang, Letian
    Jantsch, Axel
    Li, Guangjun
    2015 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, 2015, : 545 - 550
  • [26] DESIGN OF 2-LEVEL FAULT-TOLERANT NETWORKS
    PRADHAN, DK
    REDDY, SM
    IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (01) : 41 - 48
  • [27] Design of fault-tolerant networks for satellites (TWTA redundancy)
    Bermond, JC
    Darrot, E
    Delmas, O
    NETWORKS, 2002, 40 (04) : 202 - 207
  • [28] Logical topology design for fault-tolerant WDM networks
    Aneja, Y
    Jaekel, A
    Bandyopadhyay, S
    OPTICAL TRANSMISSION SYSTEMS AND EQUIPMENT FOR WDM NETWORKING II, 2003, 5247 : 242 - 253
  • [29] FAULT-TOLERANT FFT NETWORKS
    JOU, JY
    ABRAHAM, JA
    IEEE TRANSACTIONS ON COMPUTERS, 1988, 37 (05) : 548 - 561
  • [30] FAULT-TOLERANT ASYNCHRONOUS NETWORKS
    PRADHAN, DK
    REDDY, SM
    IEEE TRANSACTIONS ON COMPUTERS, 1973, C 22 (07) : 662 - 669