Design of fault-tolerant on-board networks with variable switch sizes

被引:0
作者
Delmas, O. [1 ,2 ]
Havet, F. [3 ,4 ]
Montassier, M. [5 ,6 ]
Perennes, S. [3 ,4 ]
机构
[1] Univ Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
[2] CNRS, LaBRI, UMR 5800, F-33400 Talence, France
[3] CNRS, UNSA, I3S, COATI Project, F-06902 Sophia Antipolis, France
[4] INRIA, F-06902 Sophia Antipolis, France
[5] Univ Montpellier 2, F-34095 Montpellier 5, France
[6] CNRS, LIRMM, F-34095 Montpellier 5, France
关键词
Fault tolerance; Switching networks; Flow networks; Vulnerability;
D O I
10.1016/j.tcs.2014.09.034
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An (n, k, r)-network is a triple N = (G, in, out) where G = (V. E) is a graph and in, out are non-negative integer functions defined on V called the input and output functions, such E that for any v E V, in(v) + out(v) + deg(v) < 2r where deg(v) is the degree of v in the = vev in(v) = n' graph G. The total number of inputs is in(V) and the total number of outputs is out(V) = E v out(v)=n+ k. An (n, k, r)-network is valid, if for any faulty output function out' (that is such that 0 < oue(v) < out(v) for any v e V, and out'(V) = n), there are n edge-disjoint paths in G such that each vertex V E V is the initial vertex of in(v) paths and the terminal vertex of outi(v) paths. We investigate the design problem of determining the minimum number Ai (n, k, r) of vertices in a valid (n,k,r)-network and of constructing minimum (n, k, r)-networks, or at least valid (n, k, r)-networks with a number of vertices close to the optimal value. We first give some upper bounds on Ar(n, k, r). We show _AI (n, k, r) < 1-A-111. When r > k/2, we prove a better upper bound: /V-(n,k, r) < 7.21--22+r+kici22n 4. 0(1). Next, we establish some lower bounds. We show that if k > r, then J\i(n, k, r) > 34. We 2r2k,. improve this bound when k > 2r: Ar(n, k, r) > 3n+2+/3-3r/2 Finally, we determine.A.r(n, k, r) up to additive constants for k < 6. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 11 条
[1]  
Adams G.B. III, 1987, COMPUTER, V20, P14
[2]  
Bermond J.-C., 2001, DESIGN FAULT T UNPUB
[3]   Fault tolerant on-board networks with priorities [J].
Bermond, JC ;
Havet, F ;
Tóth, CD .
NETWORKS, 2006, 47 (01) :9-25
[4]   Design of fault-tolerant networks for satellites (TWTA redundancy) [J].
Bermond, JC ;
Darrot, E ;
Delmas, O .
NETWORKS, 2002, 40 (04) :202-207
[5]  
Darrot E., 1997, THESIS U NICE SOPHIA
[6]  
Duato J., 2003, Interconnection networks
[7]  
Eng ICY., 1978, IEEE 1978 NAT TEL C, P185
[8]  
Ford L.R., 1962, FLOWS NETWORKS
[9]  
Havet F., 2006, J INTERCONNECTION NE, V7, P391
[10]  
Leighton F.T., 1992, Introduction to Parallel Algorithms and Architechtures: Arrays, Trees, Hypercubes