Design of fault-tolerant on-board networks with variable switch sizes

被引:0
|
作者
Delmas, O. [1 ,2 ]
Havet, F. [3 ,4 ]
Montassier, M. [5 ,6 ]
Perennes, S. [3 ,4 ]
机构
[1] Univ Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
[2] CNRS, LaBRI, UMR 5800, F-33400 Talence, France
[3] CNRS, UNSA, I3S, COATI Project, F-06902 Sophia Antipolis, France
[4] INRIA, F-06902 Sophia Antipolis, France
[5] Univ Montpellier 2, F-34095 Montpellier 5, France
[6] CNRS, LIRMM, F-34095 Montpellier 5, France
关键词
Fault tolerance; Switching networks; Flow networks; Vulnerability;
D O I
10.1016/j.tcs.2014.09.034
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An (n, k, r)-network is a triple N = (G, in, out) where G = (V. E) is a graph and in, out are non-negative integer functions defined on V called the input and output functions, such E that for any v E V, in(v) + out(v) + deg(v) < 2r where deg(v) is the degree of v in the = vev in(v) = n' graph G. The total number of inputs is in(V) and the total number of outputs is out(V) = E v out(v)=n+ k. An (n, k, r)-network is valid, if for any faulty output function out' (that is such that 0 < oue(v) < out(v) for any v e V, and out'(V) = n), there are n edge-disjoint paths in G such that each vertex V E V is the initial vertex of in(v) paths and the terminal vertex of outi(v) paths. We investigate the design problem of determining the minimum number Ai (n, k, r) of vertices in a valid (n,k,r)-network and of constructing minimum (n, k, r)-networks, or at least valid (n, k, r)-networks with a number of vertices close to the optimal value. We first give some upper bounds on Ar(n, k, r). We show _AI (n, k, r) < 1-A-111. When r > k/2, we prove a better upper bound: /V-(n,k, r) < 7.21--22+r+kici22n 4. 0(1). Next, we establish some lower bounds. We show that if k > r, then J\i(n, k, r) > 34. We 2r2k,. improve this bound when k > 2r: Ar(n, k, r) > 3n+2+/3-3r/2 Finally, we determine.A.r(n, k, r) up to additive constants for k < 6. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 50 条
  • [1] Fault-tolerant ethernet-based vehicle on-board networks
    Daoud, Ramez M.
    Amer, Hassanein H.
    Elsayed, Hany M.
    Sallez, Yves
    IECON 2006 - 32ND ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS, VOLS 1-11, 2006, : 135 - +
  • [2] Fault-Tolerant Distributed Approach to Satellite On-Board Computer Design
    Fayyaz, Muhammad
    Vladimirova, Tanya
    2014 IEEE AEROSPACE CONFERENCE, 2014,
  • [3] A fault-tolerant on-board computer for space applications
    Castro, HD
    Junior, JRIR
    Silveira, JAN
    Santiago, V
    Monteiro, AMV
    ARCHITECTURES, LANGUAGES AND PATTERNS FOR PARALLEL AND DISTRIBUTED APPLICATIONS, 1998, 52 : 219 - 229
  • [4] Fault-tolerant inverter for on-board aircraft EHA
    Richardeau, F.
    Mavier, J.
    Piquet, H.
    Gateau, G.
    2007 EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, VOLS 1-10, 2007, : 2998 - 3006
  • [5] Fault tolerant on-board networks with priorities
    Bermond, JC
    Havet, F
    Tóth, CD
    NETWORKS, 2006, 47 (01) : 9 - 25
  • [6] Design of minimal fault tolerant on-board networks:: Practical constructions
    Bermond, Jean-Claude
    Giroire, Frederic
    Perennes, Stephane
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, PROCEEDINGS, 2007, 4474 : 261 - +
  • [7] Fault-tolerant on-board computing for robotic space missions
    Zima, Hans P.
    James, Mark L.
    Springer, Paul L.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2011, 23 (17): : 2192 - 2204
  • [8] Design and Implementation of a Low-cost Fault-tolerant On-Board Computer for Micro-Satellite
    Tian, Shiqiang
    Yin, Zuobiao
    Yan, Jian
    Liu, Xuming
    2012 7TH INTERNATIONAL ICST CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA (CHINACOM), 2012, : 129 - 134
  • [9] On-board fault-tolerant SAR processor for spaceborne imaging radar systems
    Fang, WC
    Le, C
    Taft, S
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 420 - 423
  • [10] Fault-Tolerant Architecture of Storage Device for On-board Spacecraft Control Systems
    Ryabtsev V.G.
    Volobuev S.V.
    Shubovich A.A.
    Russian Aeronautics, 2019, 62 (01): : 106 - 112