Structures of Neural Correlation and How They Favor Coding

被引:82
作者
Franke, Felix [1 ,2 ,3 ]
Fiscella, Michele [1 ]
Sevelev, Maksim [2 ,3 ]
Roska, Botond [4 ]
Hierlemann, Andreas [1 ]
da Silveira, Rava Azeredo [2 ,3 ,5 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
[2] Ecole Normale Super, Dept Phys, F-75005 Paris, France
[3] Univ Paris 07, Univ Paris 06, Ctr Natl Rech Sci, Lab Phys Stat, F-75005 Paris, France
[4] Friedrich Miescher Inst, CH-4058 Basel, Switzerland
[5] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
基金
瑞士国家科学基金会;
关键词
PRIMARY VISUAL-CORTEX; RETINAL GANGLION-CELLS; NOISE CORRELATIONS; NEURONAL INTERACTIONS; SYNCHRONOUS ACTIVITY; MOVEMENT DIRECTION; POPULATION CODES; INFORMATION; VARIABILITY; PATTERNS;
D O I
10.1016/j.neuron.2015.12.037
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The neural representation of information suffers from "noise''-the trial-to-trial variability in the response of neurons. The impact of correlated noise upon population coding has been debated, but a direct connection between theory and experiment remains tenuous. Here, we substantiate this connection and propose a refined theoretical picture. Using simultaneous recordings from a population of direction-selective retinal ganglion cells, we demonstrate that coding benefits from noise correlations. The effect is appreciable already in small populations, yet it is a collective phenomenon. Furthermore, the stimulus-dependent structure of correlation is key. We develop simple functional models that capture the stimulus-dependent statistics. We then use them to quantify the performance of population coding, which depends upon interplays of feature sensitivities and noise correlations in the population. Because favorable structures of correlation emerge robustly in circuits with noisy, nonlinear elements, they will arise and benefit coding beyond the confines of retina.
引用
收藏
页码:409 / 422
页数:14
相关论文
共 53 条
[1]   The effect of correlated variability on the accuracy of a population code [J].
Abbott, LF ;
Dayan, P .
NEURAL COMPUTATION, 1999, 11 (01) :91-101
[2]   Neural correlations, population coding and computation [J].
Averbeck, BB ;
Latham, PE ;
Pouget, A .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (05) :358-366
[3]   Effects of noise correlations on information encoding and decoding [J].
Averbeck, Bruno B. ;
Lee, Daeyeol .
JOURNAL OF NEUROPHYSIOLOGY, 2006, 95 (06) :3633-3644
[4]   Context-Dependent Changes in Functional Circuitry in Visual Area MT [J].
Cohen, Marlene R. ;
Newsome, William T. .
NEURON, 2008, 60 (01) :162-173
[5]   High-Fidelity Coding with Correlated Neurons [J].
da Silveira, Rava Azeredo ;
Berry, Michael J., II .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (11)
[6]   State Dependence of Noise Correlations in Macaque Primary Visual Cortex [J].
Ecker, Alexander S. ;
Berens, Philipp ;
Cotton, R. James ;
Subramaniyan, Manivannan ;
Denfield, George H. ;
Cadwell, Cathryn R. ;
Smirnakis, Stelios M. ;
Bethge, Matthias ;
Tolias, Andreas S. .
NEURON, 2014, 82 (01) :235-248
[7]   The Effect of Noise Correlations in Populations of Diversely Tuned Neurons [J].
Ecker, Alexander S. ;
Berens, Philipp ;
Tolias, Andreas S. ;
Bethge, Matthias .
JOURNAL OF NEUROSCIENCE, 2011, 31 (40) :14272-14283
[8]   Decorrelated Neuronal Firing in Cortical Microcircuits [J].
Ecker, Alexander S. ;
Berens, Philipp ;
Keliris, Georgios A. ;
Bethge, Matthias ;
Logothetis, Nikos K. ;
Tolias, Andreas S. .
SCIENCE, 2010, 327 (5965) :584-587
[9]   Visual coding with a population of direction-selective neurons [J].
Fiscella, Michele ;
Franke, Felix ;
Farrow, Karl ;
Mueller, Jan ;
Roska, Botond ;
da Silveira, Rava Azeredo ;
Hierlemann, Andreas .
JOURNAL OF NEUROPHYSIOLOGY, 2015, 114 (04) :2485-2499
[10]   Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection [J].
Fiscella, Michele ;
Farrow, Karl ;
Jones, Ian L. ;
Jaeckel, David ;
Mueller, Jan ;
Frey, Urs ;
Bakkum, Douglas J. ;
Hantz, Peter ;
Roska, Botond ;
Hierlemann, Andreas .
JOURNAL OF NEUROSCIENCE METHODS, 2012, 211 (01) :103-113