Fractional calculus for respiratory mechanics: Power law impedance, viscoelasticity, and tissue heterogeneity

被引:49
作者
Ionescu, Clara [1 ]
Kelly, James F. [2 ]
机构
[1] Univ Ghent, Dept Elect Energy Met Mech Construct & Syst EEMMe, Res Grp Dynam Syst & Control DySC, Technol Pk 914, B-9052 Ghent, Belgium
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词
Fractional calculus; Respiratory mechanics; Fractional order impedance model; Viscoelasticity; Heterogeneity; SPECTRAL DIMENSION; LADDER MODELS; CAT LUNG; IDENTIFICATION; DEPOSITION; EQUATIONS; CHEST;
D O I
10.1016/j.chaos.2017.03.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a synopsis of fractional calculus tools for characterising respiratory mechanics. A discussion on power law impedance, viscoelasticity and tissue heterogeneity is made based on morphological and structural properties of lungs. Although targeted towards respiratory system applications, these tools can serve as a basis for modelling other biological structures as well. The paper underlines the importance of characterising the viscoelastic properties of the respiratory tissue and its time-varying properties as a function of disease progress. Perspectives are suggested for developing models able to mimic disease progression and understand treatment effects for better therapeutic management. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:433 / 440
页数:8
相关论文
共 73 条
  • [61] A new approach to the compartmental analysis in pharmacokinetics: fractional time evolution of diclofenac
    Popovic, Jovan K.
    Atanackovic, Milica T.
    Pilipovic, Ana S.
    Rapaic, Milan R.
    Pilipovic, Stevan
    Atanackovic, Teodor M.
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2010, 37 (02) : 119 - 134
  • [62] RAMMAL R, 1983, J PHYS LETT-PARIS, V44, pL13, DOI 10.1051/jphyslet:0198300440101300
  • [63] ANALYSIS OF PRESSURE-VOLUME CHARACTERISTICS OF LUNGS
    SALAZAR, E
    KNOWLES, JH
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 1964, 19 (01) : 97 - &
  • [64] HIERARCHICAL ANALOGS TO FRACTIONAL RELAXATION EQUATIONS
    SCHIESSEL, H
    BLUMEN, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (19): : 5057 - 5069
  • [65] MESOSCOPIC PICTURES OF THE SOL-GEL TRANSITION - LADDER MODELS AND FRACTAL NETWORKS
    SCHIESSEL, H
    BLUMEN, A
    [J]. MACROMOLECULES, 1995, 28 (11) : 4013 - 4019
  • [66] Fractal mobile/immobile solute transport
    Schumer, R
    Benson, DA
    Meerschaert, MM
    Baeumer, B
    [J]. WATER RESOURCES RESEARCH, 2003, 39 (10) : SBH131 - SBH1312
  • [67] Fractional multi-models of the frog gastrocnemius muscle
    Sommacal, L.
    Melchior, P.
    Oustaloup, A.
    Cabelguen, J. -M.
    Ijspeert, A. J.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) : 1415 - 1430
  • [68] LUNG-TISSUE VISCOELASTICITY - A MATHEMATICAL FRAMEWORK AND ITS MOLECULAR-BASIS
    SUKI, B
    BARABASI, AL
    LUTCHEN, KR
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 1994, 76 (06) : 2749 - 2759
  • [69] Lung Parenchymal Mechanics
    Suki, Bela
    Stamenovic, Dimitrije
    Hubmayr, Rolf
    [J]. COMPREHENSIVE PHYSIOLOGY, 2011, 1 (03) : 1317 - 1351
  • [70] Tschoegl N. W., 1989, PHENOMENOLOGICAL THE