Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme

被引:23
作者
Almongy, Hisham M. [1 ]
Alshenawy, Fatma Y. [1 ]
Almetwally, Ehab M. [2 ]
Abdo, Doaa A. [1 ]
机构
[1] Mansoura Univ, Appl Stat & Insurance Dept, Fac Commerce, Mansoura 35511, Egypt
[2] Delta Univ Sci & Technol, Stat Dept, Fac Business Adm, Mansoura 35511, Egypt
关键词
Weibull extension distribution; progressive type-II censoring; maximum product spacing; Monte Carlo simulation; binomial removal; Bayesian method; maximum likelihood method; PARAMETERS;
D O I
10.3390/axioms10020100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Weibull extension distribution parameters are estimated under a progressive type-II censoring scheme with random removal. The parameters of the model are estimated using the maximum likelihood method, maximum product spacing, and Bayesian estimation methods. In classical estimation (maximum likelihood method and maximum product spacing), we did use the Newton-Raphson algorithm. The Bayesian estimation is done using the Metropolis-Hastings algorithm based on the square error loss function. The proposed estimation methods are compared using Monte Carlo simulations under a progressive type-II censoring scheme. An empirical study using a real data set of transformer insulation and a simulation study is performed to validate the introduced methods of inference. Based on the result of our study, it can be concluded that the Bayesian method outperforms the maximum likelihood and maximum product-spacing methods for estimating the Weibull extension parameters under a progressive type-II censoring scheme in both simulation and empirical studies.
引用
收藏
页数:16
相关论文
共 35 条
  • [1] Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results
    Abd El-Raheem, A. M.
    Almetwally, Ehab M.
    Mohamed, M. S.
    Hafez, E. H.
    [J]. AIMS MATHEMATICS, 2021, 6 (05): : 5222 - 5255
  • [2] Abu-Moussa M., 2021, INFORM SCI LETT, V10, P101
  • [3] Marshall-Olkin Alpha Power Weibull Distribution: Different Methods of Estimation Based on Type-I and Type-II Censoring
    Almetwally, Ehab M.
    Sabry, Mohamed A. H.
    Alharbi, Randa
    Alnagar, Dalia
    Mubarak, Sh A. M.
    Hafez, E. H.
    [J]. COMPLEXITY, 2021, 2021
  • [4] Almetwally EM., 2019, J. Data Sci, V17, P407, DOI [10.6339/JDS.20190417(2).0010, DOI 10.6339/JDS.20190417(2).0010]
  • [5] The Weibull Generalized Exponential Distribution with Censored Sample: Estimation and Application on Real Data
    Almongy, Hisham M.
    Almetwally, Ehab M.
    Alharbi, Randa
    Alnagar, Dalia
    Hafez, E. H.
    El-Din, Marwa M. Mohie
    [J]. COMPLEXITY, 2021, 2021
  • [6] Progressive Type-II Censoring Schemes of Extended Odd Weibull Exponential Distribution with Applications in Medicine and Engineering
    Alshenawy, R.
    Al-Alwan, Ali
    Almetwally, Ehab M.
    Afify, Ahmed Z.
    Almongy, Hisham M.
    [J]. MATHEMATICS, 2020, 8 (10) : 1 - 19
  • [7] Ashour S. K., 2020, Statist. Optim. Inf. Comput., V9, P47, DOI [10.19139/soic-2310-5070-611, DOI 10.19139/SOIC-2310-5070-611]
  • [8] The Odds Exponential-Pareto IV Distribution: Regression Model and Application
    Baharith, Lamya A.
    AL-Beladi, Kholod M.
    Klakattawi, Hadeel S.
    [J]. ENTROPY, 2020, 22 (05)
  • [9] Progressive censoring methodology: an appraisal
    Balakrishnan, N.
    [J]. TEST, 2007, 16 (02) : 211 - 259
  • [10] Balakrishnan N., 2000, PROGR CENSORING THEO