Prediction of Progression to Alzheimer's disease with Deep InfoMax

被引:10
|
作者
Fedorov, Alex [1 ,2 ]
Hjelm, R. Devon [3 ,4 ,5 ]
Abrol, Anees [1 ,2 ]
Fu, Zening [1 ]
Du, Yuhui [1 ,6 ]
Plis, Sergey [1 ]
Calhoun, Vince D. [1 ,2 ]
机构
[1] Mind Res Network, Albuquerque, NM USA
[2] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[3] Microsoft Res, Montreal, PQ, Canada
[4] Montreal Inst Learning Algorithms, Montreal, PQ, Canada
[5] Univ Montreal, Dept Comp Sci & Operat Res, Montreal, PQ, Canada
[6] Shanxi Univ, Sch Comp Informat Technol, Taiyuan, Peoples R China
来源
2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI) | 2019年
基金
美国国家卫生研究院;
关键词
CNN; MRI; Deep InfoMax; classification; unsupervised;
D O I
10.1109/bhi.2019.8834630
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Arguably, unsupervised learning plays a crucial role in the majority of algorithms for processing brain imaging. A recently introduced unsupervised approach Deep InfoMax (DIM) is a promising tool for exploring brain structure in a flexible non-linear way. In this paper, we investigate the use of variants of DIM in a setting of progression to Alzheimer's disease in comparison with supervised AlexNet and ResNet inspired convolutional neural networks. As a benchmark, we use a classification task between four groups: patients with stable, and progressive mild cognitive impairment (MCI), with Alzheimer's disease, and healthy controls. Our dataset is comprised of 828 subjects from the Alzheimers Disease Neuroimaging Initiative (ADNI) database. Our experiments highlight encouraging evidence of the high potential utility of DIM in future neuroimaging studies.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Predicting progression of Alzheimer's disease
    Rachelle S Doody
    Valory Pavlik
    Paul Massman
    Susan Rountree
    Eveleen Darby
    Wenyaw Chan
    Alzheimer's Research & Therapy, 2
  • [32] Metabolome in progression to Alzheimer's disease
    M Orešič
    T Hyötyläinen
    S-K Herukka
    M Sysi-Aho
    I Mattila
    T Seppänan-Laakso
    V Julkunen
    P V Gopalacharyulu
    M Hallikainen
    J Koikkalainen
    M Kivipelto
    S Helisalmi
    J Lötjönen
    H Soininen
    Translational Psychiatry, 2011, 1 : e57 - e57
  • [33] Predicting progression of Alzheimer's disease
    Doody, R
    Pavlik, V
    Massman, P
    Rountree, SS
    Darby, E
    Chan, W
    NEUROLOGY, 2006, 66 (05) : A347 - A347
  • [34] Progression of atrophy in Alzheimer's disease
    Killiany, Ronald
    LANCET NEUROLOGY, 2006, 5 (10): : 805 - 806
  • [35] Metabolome in progression to Alzheimer's disease
    Oresic, M.
    Hyotylainen, T.
    Herukka, S-K
    Sysi-Aho, M.
    Mattila, I.
    Seppanan-Laakso, T.
    Julkunen, V.
    Gopalacharyulu, P. V.
    Hallikainen, M.
    Koikkalainen, J.
    Kivipelto, M.
    Helisalmi, S.
    Lotjonen, J.
    Soininen, H.
    TRANSLATIONAL PSYCHIATRY, 2011, 1 : e57 - e57
  • [36] Slowing progression of Alzheimer's disease
    不详
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 84 (02) : 185 - 185
  • [37] Slowing the progression of Alzheimer's disease
    Laffman, Elise
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 83 (05) : 656 - 656
  • [38] Halting the progression of Alzheimer's disease
    Houlton, S
    MANUFACTURING CHEMIST, 2001, 72 (09): : 18 - 20
  • [39] Predicting progression of Alzheimer's disease
    Doody, Rachelle S.
    Pavlik, Valory
    Massman, Paul
    Rountree, Susan
    Darby, Eveleen
    Chan, Wenyaw
    ALZHEIMERS RESEARCH & THERAPY, 2010, 2 (01):
  • [40] Unraveling Gender Fairness Analysis in Deep Learning Prediction of Alzheimer's Disease
    Hammonds, Solveig K.
    Eftestol, Trygve
    Oppedal, Ketil
    Fernandez-Quilez, Alvaro
    2024 4TH INTERNATIONAL CONFERENCE ON APPLIED ARTIFICIAL INTELLIGENCE, ICAPAI, 2024, : 58 - 64