Prediction of Progression to Alzheimer's disease with Deep InfoMax

被引:10
|
作者
Fedorov, Alex [1 ,2 ]
Hjelm, R. Devon [3 ,4 ,5 ]
Abrol, Anees [1 ,2 ]
Fu, Zening [1 ]
Du, Yuhui [1 ,6 ]
Plis, Sergey [1 ]
Calhoun, Vince D. [1 ,2 ]
机构
[1] Mind Res Network, Albuquerque, NM USA
[2] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[3] Microsoft Res, Montreal, PQ, Canada
[4] Montreal Inst Learning Algorithms, Montreal, PQ, Canada
[5] Univ Montreal, Dept Comp Sci & Operat Res, Montreal, PQ, Canada
[6] Shanxi Univ, Sch Comp Informat Technol, Taiyuan, Peoples R China
来源
2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI) | 2019年
基金
美国国家卫生研究院;
关键词
CNN; MRI; Deep InfoMax; classification; unsupervised;
D O I
10.1109/bhi.2019.8834630
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Arguably, unsupervised learning plays a crucial role in the majority of algorithms for processing brain imaging. A recently introduced unsupervised approach Deep InfoMax (DIM) is a promising tool for exploring brain structure in a flexible non-linear way. In this paper, we investigate the use of variants of DIM in a setting of progression to Alzheimer's disease in comparison with supervised AlexNet and ResNet inspired convolutional neural networks. As a benchmark, we use a classification task between four groups: patients with stable, and progressive mild cognitive impairment (MCI), with Alzheimer's disease, and healthy controls. Our dataset is comprised of 828 subjects from the Alzheimers Disease Neuroimaging Initiative (ADNI) database. Our experiments highlight encouraging evidence of the high potential utility of DIM in future neuroimaging studies.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Deep recurrent model for individualized prediction of Alzheimer's disease progression
    Jung, Wonsik
    Jun, Eunji
    Suk, Heung-Il
    NEUROIMAGE, 2021, 237
  • [2] A Tensorized Multitask Deep Learning Network for Progression Prediction of Alzheimer's Disease
    Tabarestani, Solale
    Eslami, Mohammad
    Cabrerizo, Mercedes
    Curiel, Rosie E.
    Barreto, Armando
    Rishe, Naphtali
    Vaillancourt, David
    DeKosky, Steven T.
    Loewenstein, David A.
    Duara, Ranjan
    Adjouadi, Malek
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [3] Preclinical Alzheimer's disease: diagnosis and prediction of progression
    Chong, MS
    Sahadevan, S
    LANCET NEUROLOGY, 2005, 4 (09): : 576 - 579
  • [4] Deep Geometrical Learning for Alzheimer's Disease Progression Modeling
    Jeong, Seungwoo
    Jung, Wonsik
    Sohn, Junghyo
    Suk, Heung-Il
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 211 - 220
  • [5] Multi-Task Deep Evidential Sequence Learning for Trustworthy Alzheimer's Disease Progression Prediction
    Zhao, Zeyuan
    Li, Ping
    Dai, Yongjie
    Min, Zhaoe
    Chen, Lei
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [6] Modifying the progression of Alzheimer's and Parkinson's disease with deep brain stimulation
    Jakobs, Martin
    Lee, Darrin J.
    Lozano, Andres M.
    NEUROPHARMACOLOGY, 2020, 171
  • [7] Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review
    Malik, Isra
    Iqbal, Ahmed
    Gu, Yeong Hyeon
    Al-antari, Mugahed A.
    DIAGNOSTICS, 2024, 14 (12)
  • [8] PPAD: a deep learning architecture to predict progression of Alzheimer's disease
    Al Olaimat, Mohammad
    Martinez, Jared
    Saeed, Fahad
    Bozdag, Serdar
    BIOINFORMATICS, 2023, 39 : I149 - I157
  • [9] PPAD: a deep learning architecture to predict progression of Alzheimer's disease
    Al Olaimat, Mohammad
    Martinez, Jared
    Saeed, Fahad
    Bozdag, Serdar
    BIOINFORMATICS, 2023, 39 : i149 - i157
  • [10] Deep Learning Based Multimodal Progression Modeling for Alzheimer's Disease
    Yang, Liuqing
    Wang, Xifeng
    Guo, Qi
    Gladstein, Scott
    Wooten, Dustin
    Li, Tengfei
    Robieson, Weining Z.
    Sun, Yan
    Huang, Xin
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2021, 13 (03): : 337 - 343