Improved size distribution control of silicon nanocrystals in a spatially confined remote plasma

被引:3
作者
Dogan, Ilker [1 ]
Westerman, Rene H. J. [1 ]
van de Sanden, Mauritius C. M. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Dutch Inst Fundamental Energy Res DIFFER, NL-3430 BE Nieuwegein, Netherlands
关键词
silicon nanocrystal; nucleation; size distribution; plasma diagnostics; HYDROGENATED AMORPHOUS-SILICON; SILANE PLASMA; CAVITY RING; DEPOSITION; MODEL; CHEMISTRY; GROWTH; PHASE; GAS; NANOPARTICLES;
D O I
10.1088/0963-0252/24/1/015030
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work demonstrates how to improve the size distribution of silicon nanocrystals (Si-NCs) synthesized in a remote plasma, in which the flow dynamics and the particular chemistry initially resulted in the formation of small (2-10 nm) and large (50-120 nm) Si-NCs. Plasma consists of two regions: an axially expanding central plasma beam and a background region around the expansion. Continuum fluid dynamics simulations demonstrate that a significant mass flow occurs from the central beam to the background region. This mass flow can be gradually reduced upon confinement of the central beam, preventing the mass transport to the background region. Transmission electron microscopy and Raman spectroscopy analyses demonstrate that the volume fraction of large Si-NCs decreases from similar to 77% to below 45% in parallel with the decrease of mass flow to the background region upon confinement, which indicates that large Si-NCs are synthesized in the background and small Si-NCs are synthesized in the central beam. Spatially resolved ion flux analyses demonstrate that the ions are localized in the central beam despite the mass flow to the background, indicating that the formation of small Si-NCs is governed by ion-assisted growth while the formation of large Si-NCs is governed by radical-neutral-assisted growth in the absence of ions. According to these observations, a better uniformity in the size distribution of Si-NCs can be obtained by creating a more uniform plasma flow and controlling the density of plasma species in the plasma.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Influence of rarefaction on the flow dynamics of a stationary supersonic hot-gas expansion [J].
Abbate, G. ;
Kleijn, C. R. ;
Thijsse, B. J. ;
Engeln, R. ;
van de Sanden, M. C. M. ;
Schram, D. C. .
PHYSICAL REVIEW E, 2008, 77 (03)
[2]   Axial temperatures and electron densities in a flowing cascaded arc: model versus experiment [J].
Beulens, J. J. ;
de Graaf, M. J. ;
Schram, D. C. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 1993, 2 (03) :180-189
[3]   Dusty plasma for nanotechnology [J].
Boufendi, L. ;
Jouanny, M. Ch ;
Kovacevic, E. ;
Berndt, J. ;
Mikikian, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (17)
[4]   THERMAL ENERGY CHARGE-TRANSFER REACTIONS OF RARE-GAS IONS TO METHANE, ETHANE, PROPANE, AND SILANE - IMPORTANCE OF FRANCK-CONDON FACTORS [J].
BOWERS, MT ;
ELLEMAN, DD .
CHEMICAL PHYSICS LETTERS, 1972, 16 (03) :486-&
[5]   ION CHEMISTRY IN SILANE DC DISCHARGES [J].
CHATHAM, H ;
GALLAGHER, A .
JOURNAL OF APPLIED PHYSICS, 1985, 58 (01) :159-169
[6]   High-Efficiency Silicon Nanocrystal Light-Emitting Devices [J].
Cheng, Kai-Yuan ;
Anthony, Rebecca ;
Kortshagen, Uwe R. ;
Holmes, Russell J. .
NANO LETTERS, 2011, 11 (05) :1952-1956
[7]   Role of the thermophoretic force on the transport of nanoparticles in dusty silane plasmas [J].
De Bleecker, K ;
Bogaerts, A ;
Goedheer, W .
PHYSICAL REVIEW E, 2005, 71 (06)
[8]   Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges [J].
De Bleecker, Kathleen ;
Bogaerts, Annemie ;
Goedheer, Wim .
NEW JOURNAL OF PHYSICS, 2006, 8
[9]   Nucleation of silicon nanocrystals in a remote plasma without subsequent coagulation [J].
Dogan, Ilker ;
Weeks, Stephen L. ;
Agarwal, Sumit ;
van de Sanden, Mauritius C. M. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (24)
[10]   Direct characterization of nanocrystal size distribution using Raman spectroscopy [J].
Dogan, Ilker ;
van de Sanden, Mauritius C. M. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (13)