Microwave Engineering of Programmable XXZ Hamiltonians in Arrays of Rydberg Atoms

被引:96
作者
Scholl, P. [1 ]
Williams, H. J. [1 ]
Bornet, G. [1 ]
Wallner, F. [1 ,4 ]
Barredo, D. [1 ,5 ]
Henriet, L. [2 ]
Signoles, A. [2 ]
Hainaut, C. [3 ]
Franz, T. [3 ]
Geier, S. [3 ]
Tebben, A. [3 ]
Salzinger, A. [3 ]
Zuern, G. [3 ]
Lahaye, T. [1 ]
Weidemuller, M. [3 ]
Browaeys, A. [1 ]
机构
[1] Univ Paris Saclay, Inst Opt Grad Sch, CNRS, Lab Charles Fabry, F-91127 Palaiseau, France
[2] Pasqal, 2 Ave Augustin Fresnel, F-91120 Palaiseau, France
[3] Heidelberg Univ, Phys Inst, Neuenheimer Feld 226, D-69120 Heidelberg, Germany
[4] Tech Univ Munich, Dept Phys, James Franck Str 1, D-85748 Garching, Germany
[5] Univ Oviedo UO, Nanomat & Nanotechnol Res Ctr CINN CSIC, Principado De Asturias 33940, El Entrego, Spain
来源
PRX QUANTUM | 2022年 / 3卷 / 02期
关键词
QUANTUM SIMULATIONS; PROPAGATION;
D O I
10.1103/PRXQuantum.3.020303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies. The atoms are placed in one-dimensional (1D) and two-dimensional (2D) arrays of optical tweezers. As illustrations, we apply this engineering to two iconic situations in spin physics: the Heisenberg model in square arrays and spin transport in 1D. We first benchmark the Hamiltonian engineering for two atoms and then demonstrate the freezing of the magnetization on an initially magnetized 2D array. Finally, we explore the dynamics of 1D domain-wall systems with both periodic and open boundary conditions. We systematically compare our data with numerical simulations and assess the residual limitations of the technique as well as routes for improvement. The geometrical versatility of the platform, combined with the flexibility of the simulated Hamiltonians, opens up exciting prospects in the fields of quantum simulation, quantum information processing, and quantum sensing.
引用
收藏
页数:10
相关论文
共 68 条
[1]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[2]   Relaxation of Antiferromagnetic Order in Spin-1/2 Chains Following a Quantum Quench [J].
Barmettler, Peter ;
Punk, Matthias ;
Gritsev, Vladimir ;
Demler, Eugene ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[3]   Synthetic three-dimensional atomic structures assembled atom by atom [J].
Barredo, Daniel ;
Lienhard, Vincent ;
De Leseleuc, Sylvain ;
Lahaye, Thierry ;
Browaeys, Antoine .
NATURE, 2018, 561 (7721) :79-82
[4]   Finite-temperature transport in one-dimensional quantum lattice models [J].
Bertini, B. ;
Heidrich-Meisner, F. ;
Karrasch, C. ;
Prosen, T. ;
Steinigeweg, R. ;
Znidaric, M. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[5]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]
[6]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[7]   Many-body physics with individually controlled Rydberg atoms [J].
Browaeys, Antoine ;
Lahaye, Thierry .
NATURE PHYSICS, 2020, 16 (02) :132-142
[8]   Light-cone-like spreading of correlations in a quantum many-body system [J].
Cheneau, Marc ;
Barmettler, Peter ;
Poletti, Dario ;
Endres, Manuel ;
Schauss, Peter ;
Fukuhara, Takeshi ;
Gross, Christian ;
Bloch, Immanuel ;
Kollath, Corinna ;
Kuhr, Stefan .
NATURE, 2012, 481 (7382) :484-487
[9]   Robust Dynamic Hamiltonian Engineering of Many-Body Spin Systems [J].
Choi, Joonhee ;
Zhou, Hengyun ;
Knowles, Helena S. ;
Landig, Renate ;
Choi, Soonwon ;
Lukin, Mikhail D. .
PHYSICAL REVIEW X, 2020, 10 (03)
[10]   Analytic solution of the domain-wall nonequilibrium stationary state [J].
Collura, Mario ;
De Luca, Andrea ;
Viti, Jacopo .
PHYSICAL REVIEW B, 2018, 97 (08)