Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction

被引:19
作者
Berghout, Tarek [1 ]
Benbouzid, Mohamed [2 ,3 ]
Mouss, Leila-Hayet [1 ]
机构
[1] Univ Batna 2, Lab Automat & Mfg Engn, Batna 05000, Algeria
[2] Univ Brest, Inst RechercheDupuy Lome UMR CNRS 6027, F-29238 Brest, France
[3] Shanghai Maritime Univ, Logist Engn Coll, Shanghai 201306, Peoples R China
关键词
bearings; prognosis; remaining useful life; data-driven; knowledge-driven; transfer learning; labels information; exploiting labels; denoising autoencoder; convolutional LSTM; WIND TURBINE BEARING; FAULT-DIAGNOSIS; NEURAL-NETWORKS; CLASSIFICATION; OPTIMIZATION; PROGNOSTICS; ALGORITHM; SELECTION;
D O I
10.3390/en14082163
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long-short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Remaining useful life prediction of rolling element bearing based on hybrid drive of data-driven and dynamic model
    Ying, Jun
    Yang, Zhaojun
    Chen, Chuanhai
    Liu, Zhifeng
    Li, Shizheng
    Chen, Hu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022,
  • [42] A Remaining Useful Life Prediction Method of Rolling Bearings Based on Deep Reinforcement Learning
    Zheng, Guokang
    Li, Yasong
    Zhou, Zheng
    Yan, Ruqiang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 22938 - 22949
  • [43] Remaining Useful Life Prediction of Rolling Bearings Based on ECA-CAE and Autoformer
    Zhong, Jianhua
    Li, Huying
    Chen, Yuquan
    Huang, Cong
    Zhong, Shuncong
    Geng, Haibin
    Zhou, Yongquan
    BIOMIMETICS, 2024, 9 (01)
  • [44] A Novel Robust Dual Unscented Particle Filter Method for Remaining Useful Life Prediction of Rolling Bearings
    Cui, Lingli
    Li, Wenjie
    Liu, Dongdong
    Wang, Huaqing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 9
  • [45] A Two-Stage Approach for the Remaining Useful Life Prediction of Bearings Using Deep Neural Networks
    Xia, Min
    Li, Teng
    Shu, Tongxin
    Wan, Jiafu
    de Silva, Clarence W.
    Wang, Zhongren
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (06) : 3703 - 3711
  • [46] Remaining useful life prediction of rolling element bearings using degradation feature based on amplitude decrease at specific frequencies
    An, Dawn
    Choi, Joo-Ho
    Kim, Nam H.
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2018, 17 (05): : 1095 - 1109
  • [47] KPCA-WPHM-SCNs-based remaining useful life prediction method for motor rolling bearings
    Han, Ying
    Song, Xinping
    Shi, Jinmei
    Li, Kun
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 46 (05) : 973 - 991
  • [48] Remaining Useful Life Prediction for Rolling Element Bearing Based on Ensemble Learning
    Zhang, Bin
    Zhang, Lijun
    Xu, Jinwu
    2013 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE (PHM), 2013, 33 : 157 - 162
  • [49] A Data-Driven Neural Network Approach for Remaining Useful Life Prediction
    Yan, Jihong
    Guo, Chaozhong
    Wang, Xing
    Zhao, Debin
    ADVANCED DESIGN AND MANUFACTURE III, 2011, 450 : 544 - 547
  • [50] Estimation of remaining useful life of rolling element bearings based on the Adaptive Kernel Kalman filter
    Li, Z.
    Zhu, R.
    Verwimp, T.
    Wen, H.
    Gryllias, K.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 229