Coordinated Control of HVDC and HVAC Power Transmission Systems Integrating a Large Offshore Wind Farm

被引:13
作者
Bidadfar, Ali [1 ]
Saborio-Romano, Oscar [1 ]
Sakamuri, Jayachandra Naidu [1 ]
Akhmatov, Vladislav [2 ]
Cutululis, Nicolaos Antonio [1 ]
Sorensen, Poul Ejnar [1 ]
机构
[1] Tech Univ Denmark, Dept Wind Energy, Bldg 115,Riso Campus,Frederiksborgvej 399, DK-4000 Roskilde, Denmark
[2] Energinet, Tonne Kjaersvej 65, DK-7000 Fredericia, Denmark
关键词
offshore wind; power transmission systems; diode rectifiers; converter control system; HVDC links; RECTIFIER-BASED HVDC;
D O I
10.3390/en12183435
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The development of efficient and reliable offshore electrical transmission infrastructure is a key factor in the proliferation of offshore wind farms (OWFs). Traditionally, high-voltage AC (HVAC) transmission has been used for OWFs. Recently, voltage-source-converter-based (VSC-based) high-voltage DC (VSC-HVDC) transmission technologies have also been considered due to their grid-forming capabilities. Diode-rectifier-based (DR-based) HVDC (DR-HVDC) transmission is also getting attention due to its increased reliability and reduced offshore platform footprint. Parallel operation of transmission systems using such technologies can be expected in the near future as new OWFs are planned in the vicinity of existing ones, with connections to more than one onshore AC system. This work addresses the control and parallel operation of three transmission links: VSC-HVDC, DR-HVDC, and HVAC, connecting a large OWF (cluster) to three different onshore AC systems. The HVAC link forms the offshore AC grid, while the diode rectifier and the wind farm are synchronized to this grid voltage. The offshore HVDC converter can operate in grid-following or grid-forming mode, depending on the requirement. The contributions of this paper are threefold. (1) Novel DR- and VSC-HVDC control methods are proposed for the parallel operation of the three transmission systems. (2) An effective control method for the offshore converter of VSC-HVDC is proposed such that it can effectively operate as either a grid-following or a grid-forming converter. (3) A novel phase-locked loop (PLL) control for VSC-HVDC is proposed for the easy transition from the grid-following to the grid-forming converter in case the HVAC link trips. Dynamic simulations in PSCAD validate the ability of the proposed controllers to ride through faults and transition between grid-following and grid-forming operation.
引用
收藏
页数:13
相关论文
共 21 条
[1]  
[Anonymous], P IEEE PES 2008 GEN
[2]  
[Anonymous], DEL 2 3 REP SIM RES
[3]  
[Anonymous], 619 CIGRE WORK GROUP
[4]  
[Anonymous], P 16 WIND INT WORKSH
[5]  
[Anonymous], P 2019 IEEE MIL POWE, DOI DOI 10.1109/PTC.2019.8810907
[6]  
[Anonymous], P 2015 EWEA OFFSH C
[7]   Efficiency and Fault Ride-Through Performance of a Diode-Rectifier- and VSC-Inverter-Based HVDC Link for Offshore Wind Farms [J].
Bernal-Perez, Soledad ;
Ano-Villalba, Salvador ;
Blasco-Gimenez, Ramon ;
Rodriguez-D'Derlee, Johel .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (06) :2401-2409
[8]   Power System Stability Analysis Using Feedback Control System Modeling Including HVDC Transmission Links [J].
Bidadfar, Ali ;
Nee, Hans-Peter ;
Zhang, Lidong ;
Harnefors, Lennart ;
Namayantavana, Sanaz ;
Abedi, Mehrdad ;
Karrari, Mehdi ;
Gharehpetian, Gevork B. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (01) :116-124
[9]   Diode-Based HVdc Link for the Connection of Large Offshore Wind Farms [J].
Blasco-Gimenez, Ramon ;
Ano-Villalba, Salvador ;
Rodriguez-D'Derlee, Johel ;
Bernal-Perez, Soledad ;
Morant, Francisco .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2011, 26 (02) :615-626
[10]   Distributed Voltage and Frequency Control of Offshore Wind Farms Connected With a Diode-Based HVdc Link [J].
Blasco-Gimenez, Ramon ;
Ano-Villalba, Salvador ;
Rodriguez-D'Derlee, Johel ;
Morant, Francisco ;
Bernal-Perez, Soledad .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (12) :3086-3105