Development and validation of deep learning algorithms for scoliosis screening using back images

被引:88
作者
Yang, Junlin [1 ]
Zhang, Kai [2 ,3 ]
Fan, Hengwei [1 ]
Huang, Zifang [4 ]
Xiang, Yifan [2 ]
Yang, Jingfan [1 ]
He, Lin [3 ]
Zhang, Lei [3 ]
Yang, Yahan [2 ]
Li, Ruiyang [2 ]
Zhu, Yi [2 ,5 ]
Chen, Chuan [2 ,5 ]
Liu, Fan [3 ]
Yang, Haoqing [3 ]
Deng, Yaolong [1 ]
Tan, Weiqing [6 ]
Deng, Nali [6 ]
Yu, Xuexiang [7 ]
Xuan, Xiaoling [8 ]
Xie, Xiaofeng [8 ]
Liu, Xiyang [3 ]
Lin, Haotian [2 ,9 ]
机构
[1] Shanghai Jiao Tong Univ, Spine Ctr, Xinhua Hosp, Sch Med, Shanghai, Peoples R China
[2] Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangzhou, Guangdong, Peoples R China
[3] Xidian Univ, Sch Comp Sci & Technol, Xian, Shanxi, Peoples R China
[4] Sun Yat Sen Univ, Dept Spine Surg, Affiliated Hosp 1, Guangzhou, Guangdong, Peoples R China
[5] Univ Miami, Miller Sch Med, Dept Mol & Cellular Pharmacol, Miami, FL 33136 USA
[6] Hlth Promot Ctr Primary & Secondary Sch Guangzhou, Guangzhou, Guangdong, Peoples R China
[7] Guangzhou Sport Univ, Dept Sports & Arts, Guangzhou, Guangdong, Peoples R China
[8] Xinmiao Scoliosis Prevent Guangdong Prov, Guangzhou, Guangdong, Peoples R China
[9] Sun Yat Sen Univ, Ctr Precis Med, Guangzhou, Guangdong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ADOLESCENT IDIOPATHIC SCOLIOSIS; DIABETIC-RETINOPATHY; X-RAYS; CANCER; CURVE; RISK; PREDICTION; DEFORMITY; SYSTEM; WOMEN;
D O I
10.1038/s42003-019-0635-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adolescent idiopathic scoliosis is the most common spinal disorder in adolescents with a prevalence of 0.5-5.2% worldwide. The traditional methods for scoliosis screening are easily accessible but require unnecessary referrals and radiography exposure due to their low positive predictive values. The application of deep learning algorithms has the potential to reduce unnecessary referrals and costs in scoliosis screening. Here, we developed and validated deep learning algorithms for automated scoliosis screening using unclothed back images. The accuracies of the algorithms were superior to those of human specialists in detecting scoliosis, detecting cases with a curve >= 20 degrees, and severity grading for both binary classifications and the four-class classification. Our approach can be potentially applied in routine scoliosis screening and periodic follow-ups of pretreatment cases without radiation exposure.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Classifying torso deformity in scoliosis using orthogonal maps of the torso [J].
Ajemba, Peter ;
Durdle, Nelson ;
Hill, Doug ;
Raso, James .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2007, 45 (06) :575-584
[2]  
[Anonymous], PRENTICE HALL COMPUT
[3]  
[Anonymous], ADV NEURAL INFORM PR, DOI DOI 10.1109/TPAMI.2016.2577031
[4]  
[Anonymous], INT C MACH LEARN CHA
[5]   Prediction of anterior scoliotic spinal curve from trunk surface using support vector regression [J].
Bergeron, C ;
Cheriet, F ;
Ronsky, J ;
Zernicke, R ;
Labelle, H .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2005, 18 (08) :973-983
[6]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[7]  
CHENG JC, 2015, NAT REV DIS PRIMERS, V1, DOI DOI 10.1038/NRDP.2015.30
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   Screening for Adolescent Idiopathic Scoliosis Evidence Report and Systematic Review for the US Preventive Services Task Force [J].
Dunn, John ;
Henrikson, Nora B. ;
Morrison, Caitlin C. ;
Blasi, Paula R. ;
Nguyen, Matt ;
Lin, Jennifer S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (02) :173-187
[10]   A population-based cohort study of 394,401 children followed for 10 years exhibits sustained effectiveness of scoliosis screening [J].
Fong, Daniel Y. T. ;
Cheung, Kenneth M. C. ;
Wong, Yat-Wa ;
Wan, Yuen-Yin ;
Lee, Chun-Fan ;
Lam, Tsz-Ping ;
Cheng, Jack C. Y. ;
Ng, Bobby K. W. ;
Luk, Keith D. K. .
SPINE JOURNAL, 2015, 15 (05) :825-833