Tangent estimation along 3D digital curves

被引:0
|
作者
Postolski, Michal [1 ,2 ]
Janaszewski, Marcin [2 ]
Kenmochi, Yukiko [1 ]
Lachaud, Jacques-Olivier [3 ]
机构
[1] Univ Paris Est, Lab Informat Gaspard Monge, Equipe A3SI, Paris, France
[2] Tech Univ Lodz, Inst Appl Comp Sci, Lodz, Poland
[3] Univ Savoie, Lab Mathemat LAMA, Chambery, France
来源
2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012) | 2012年
关键词
SEGMENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new three-dimensional (3D) tangent estimator by extending the two-dimensional (2D) lambda-maximal segment tangent (lambda-MST) estimator, which has very good theoretical and practical behaviors. We show that our proposed estimator keeps the same time complexity, accuracy and experimental asymptotic behaviors as the original 2D one.
引用
收藏
页码:2079 / 2082
页数:4
相关论文
共 50 条
  • [1] Estimation of curvature along curves with application to fibres in 3D images of paper
    Coeurjolly, D
    Svensson, S
    IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 247 - 254
  • [2] Experimental comparison of continuous and discrete tangent estimators along digital curves
    de Vieilleville, Francois
    Lachaud, Jacques-Olivier
    COMBINATORIAL IMAGE ANALYSIS, 2008, 4958 : 26 - +
  • [3] Digital representation schemes for 3D curves
    Jonas, A
    Kiryati, N
    PATTERN RECOGNITION, 1997, 30 (11) : 1803 - 1816
  • [4] Digital curves in 3D space and a linear-time length estimation algorithm
    Bülow, T
    Klette, R
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) : 962 - 970
  • [5] Light shaping along 3D curves and particle manipulation
    Rodrigo, Jose A.
    Alieva, Tatiana
    COMPLEX LIGHT AND OPTICAL FORCES IX, 2015, 9379
  • [6] Error estimation of 3D reconstruction in 3D digital image correlation
    Zhu, Chengpeng
    Yu, Shanshan
    Liu, Cong
    Jiang, Pengfei
    Shao, Xinxing
    He, Xiaoyuan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (02)
  • [7] Reversible vectorisation of 3D digital planar curves and applications
    Sivignon, Isabelle
    Dupont, Florent
    Chassery, Jean-Marc
    IMAGE AND VISION COMPUTING, 2007, 25 (10) : 1644 - 1656
  • [8] Tangential Cover for 3D Irregular Noisy Digital Curves
    Ngo, Phuc
    Debled-Rennesson, Isabelle
    DISCRETE GEOMETRY AND MATHEMATICAL MORPHOLOGY, DGMM 2022, 2022, 13493 : 315 - 329
  • [9] A Note on 0-Gaps in 3D Digital Curves
    Nordo, Giorgio
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (08) : 3707 - 3715
  • [10] Least-squares smoothing of 3D digital curves
    Glasa, J
    REAL-TIME IMAGING, 2005, 11 (5-6) : 465 - 473